Círculos inscritos en cuadrados
Cuando un círculo es inscrito en un cuadrado , el diámetro del círculo es igual a la longitud del lado del cuadrado.
Ejemplo 1:
Encuentre la longitud del lado s del cuadrado.
La diagonal del cuadrado es de 3 pulgadas. Sabemos del Teorema de Pitágoras que la diagonal de un cuadrado es por la longitud de un lado. Por lo tanto:
Ejemplo 2:
Encuentre el área del círculo.
Primero, encuentre la diagonal del cuadrado. Su longitud es por la longitud del lado, o cm.
Este valor también es el diámetro del círculo. Así, el radio del círculo es la mitad de esa longitud, o .
Para encontrar el área del círculo, use la fórmula .
- CIA - Certified Internal Auditor Test Prep
- CompTIA Test Prep
- Latin American Politics Tutors
- High School Political Science Tutors
- GMAT Test Prep
- Logic Proofs Tutors
- AANP - American Association of Nurse Practitioners Courses & Classes
- IB Dance HL Tutors
- Financial Accounting Tutors
- French 2 Tutors
- CFA Test Prep
- AP Japanese Language and Culture Tutors
- CAHSEE ELA Tutors
- Planetary Science Tutors
- CLEP Principles of Microeconomics Test Prep
- Spanish Courses & Classes
- FAA - Federal Aviation Administration examination Courses & Classes
- Strategic Planning Tutors
- Immunology Tutors
- Braille Tutors