Become a math whiz with AI Tutoring, Practice Questions & more.

HotmathMath Homework. Do It Faster, Learn It Better.

Exactitud y error

Algunos problemas matemáticos requieren de una respuesta exacta, mientras que otros, con una respuesta aproximada es suficiente.

Cuando un problema involucra la medida de una cantidad del mundo real, siempre hay un cierto nivel de aproximación que esta sucediendo. Por ejemplo, considere dos problemas diferentes que involucran medidas de tiempo. Si el problema involucra velocistas corriendo los 100 metros, necesitará usar medidas precisas: centésimas de un segundo o mejores. Si el problema involucra edades de personas, es usualmente suficiente aproximarla al año más cercano.

Algunas veces cuando un problema involucra raíces cuadradas u otros números irracionales como pi , o incluso una fracción complicada, es muy útil usar aproximaciones decimales—por lo menos al final, cuando va a dar su respuesta.

    Ejemplo 1:

    Deanna esta construyendo una cerca de alambre para su jardín de la forma siguiente. Encuentre la longitud de la hipotenusa del triángulo en metros.

    Math diagram

    Usando el teorema de Pitagóras, obtenemos:

    Math diagram

    Así la hipotenusa es de sqrt(56) metros de largo. Esa es la respuesta exacta. Pero tener la respuesta en esta forma no es muy útil si estamos intentando construir algo. Como corta una pieza de alambre de sqrt(56)  m de largo?

    Una buena calculadora nos dará el valor de sqrt(56) correcto para 30 lugares de decimal:

    sqrt(56) \approx 7.4833147735478827711674974646331

    Incluso esta es una aproximación. Pero es una mucho mejor aproximación la que necesita. En este caso, redondear el valor al centímetro más cercano (centésima de un metro) es probablemente suficiente.

    sqrt(56) \approx 7.48

La exactitud de una medida o aproximación es el grado de cercanía con el valor exacto. El error es la diferencia entre la aproximación y el valor exacto.

Cuando trabaja con problemas de multipasos, debe tener cuidado con las aproximaciones. Algunas veces, un error que es aceptable en un paso puede multiplicarse en un error más grande al final.

    Ejemplo 2:

    Un disco de plástico es de la forma de un círculo exactamente de 11 pulgadas en diámetro. Encuentre el área combinada de 10,000 de tales discos.

    Suponga que usa 3.14 como una aproximación para π. Usando la fórmula para el área de un círculo, obtenemos que el área de un disco es:

    A \approx 379.94

    Multiplique este valor por 10,000 para obtener el área combinada de 10,000 discos.

    379.94 x 10,000 = 3799400

    Esto nos da una respuesta de 3,799,400 pulgadas cuadradas. Pero espere!

    Vea que pasa cuando usamos un valor más exacto para π tal como 3.1416:

    Math diagram

    Multiplique esto por 10,000 para obtener el área combinada:

    380.1336 x 10000 \approx 3801336

    Esto es casi 2000 pulgadas cuadradas más que nuestra estimación previa!

 

Subjects Near Me
Popular Cities
Popular Subjects
;
Download our free learning tools apps and test prep books
varsity tutors app storevarsity tutors google play storevarsity tutors ibooks store