All Calculus 3 Resources
Example Questions
Example Question #15 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #13 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #17 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #121 : Vectors And Vector Operations
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
This zero result stems from the fact that these vectors are parallel, a fact which might be apparent from quick observation.
Example Question #122 : Vectors And Vector Operations
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #123 : Vectors And Vector Operations
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #371 : Calculus 3
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
It may go without saying that these two vectors are parallel (afterall, both go strictly in the j-direction), and so the cross product is zero.
Example Question #22 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #21 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #125 : Vectors And Vector Operations
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Certified Tutor
Certified Tutor