All Calculus 3 Resources
Example Questions
Example Question #2 : Cross Product
For what angle(s) is the cross product ?
We have the following equation that relates the cross product of two vectors to the relative angle between them , written as
.
From this, we can see that the numerator, or cross product, will be whenever . This will be true for all even multiples of . Therefore, we find that the cross product of two vectors will be for .
Example Question #361 : Calculus 3
Evaluate
None of the other answers
None of the other answers
It is not possible to take the cross product of -component vectors. The definition of the cross product states that the two vectors must each have components. So the above problem is impossible.
Example Question #7 : Cross Product
Compute .
To evaluate the cross product, we use the determinant formula
So we have
. (Use cofactor expansion along the top row. This is typically done when taking any cross products)
Example Question #2 : Cross Product
Evaluate .
None of the other answers
To evaluate the cross product, we use the determinant formula
So we have
. (Use cofactor expansion along the top row. This is typically done when taking any cross products)
Example Question #9 : Cross Product
Find the cross product of the two vectors.
To find the cross product, we solve for the determinant of the matrix
The determinant equals
As the cross-product.
Example Question #1 : Cross Product
Find the cross product of the two vectors.
To find the cross product, we solve for the determinant of the matrix
The determinant equals
As the cross-product.
Example Question #11 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #12 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #12 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Example Question #14 : Cross Product
Determine the cross product , if and
The cross product of two vectors is a new vector. In order to find the cross product, it is useful to know the following relationships between the directional vectors:
Note how the sign changes when terms are reordered; order matters!
Scalar values (the numerical coefficients) multiply through, e.g:
With these principles in mind, we can calculate the cross product of our vectors and
Certified Tutor