High School Math : High School Math

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Using Sigma Notation

Indicate the sum of the following series:

\displaystyle \sum_{m=-2}^{9}(2)^m

Possible Answers:

\displaystyle 1230.75

\displaystyle 1302.75

\displaystyle 1000.25

\displaystyle 1023.75

\displaystyle 1032.25

Correct answer:

\displaystyle 1023.75

Explanation:

The formula for the sum of a geometric series is

\displaystyle S=\frac{a_1-a_1r^n}{1-r},

where \displaystyle a_1 is the first term in the series, \displaystyle r is the rate of change between sequential terms, and \displaystyle n is the number of terms in the series

For this problem, these values are:

\displaystyle a_1 = \frac{1}{4}

\displaystyle r = 2

\displaystyle n = 12

Plugging in our values, we get:

\displaystyle S=\frac{\frac{1}{4}-\frac{1}{4}(2)^{12}}{1-2}

\displaystyle S = 1023.75

Example Question #1 : Using Sigma Notation

Indicate the sum of the following series.

\displaystyle \sum_{b=2}^{11} \frac{1}{2}(4)^{b-2}

Possible Answers:

\displaystyle 172,764.5

\displaystyle 174,726.5

\displaystyle 176,742.5

\displaystyle 164,772.5

\displaystyle 174,762.5

Correct answer:

\displaystyle 174,762.5

Explanation:

The formula for the sum of a geometric series is

\displaystyle S=\frac{a_1-a_1r^n}{1-r},

where \displaystyle a_1 is the first term in the series, \displaystyle r is the rate of change between sequential terms, and \displaystyle n is the number of terms in the series

In this problem we have:

\displaystyle a_1 = \frac{1}{2}

\displaystyle r = 4

\displaystyle n = 10

Plugging in our values, we get:

\displaystyle S=\frac{\frac{1}{2}-\frac{1}{2}(4)^{10}}{1-4}

\displaystyle S = 174,762.5

Example Question #2051 : High School Math

Consider the sequence: \displaystyle 2,\ 5,\ 8,\ 11,\ ...

What is the fifteenth term in the sequence?

Possible Answers:

\displaystyle 38

\displaystyle 44

\displaystyle 41

\displaystyle 47

Correct answer:

\displaystyle 44

Explanation:

The sequence can be described by the equation \displaystyle \small 2+3(n-1), where \displaystyle n is the term in the sequence.

For the 15th term, \displaystyle n=15.

\displaystyle \small 2+3(n-1)=2+3(15-1)

\displaystyle 2+3(14)

\displaystyle 2+42

\displaystyle 44

Example Question #31 : Pre Calculus

What are the first three terms in the series?

\displaystyle \sum_{n=1}^{7}(4n-5)

Possible Answers:

\displaystyle (3)+(7)+(11)

\displaystyle (1)+(3)+(7)

\displaystyle (-1)+(3)+(7)

\displaystyle (-1)+(3)+(8)

\displaystyle (-5)+(-1)+(3)

Correct answer:

\displaystyle (-1)+(3)+(7)

Explanation:

To find the first three terms, replace \displaystyle n with \displaystyle 1\displaystyle 2, and \displaystyle 3.

\displaystyle (4n-5) = (4(1)-5)=-1

\displaystyle (4n-5) = (4(2)-5)=3

\displaystyle (4n-5) = (4(3)-5)=7

The first three terms are \displaystyle -1\displaystyle 3, and \displaystyle 7.

Example Question #1 : Finding Terms In A Series

Find the first three terms in the series.

\displaystyle \sum_{n=3}^{10}(8-5n)

Possible Answers:

\displaystyle (3)+(-2)+(-7)

\displaystyle (-2)+(-7)+(-12)

\displaystyle (-7)+(12)+(-17)

\displaystyle (-7)+(-12)+(-17)

\displaystyle (7)+(12)+(17)

Correct answer:

\displaystyle (-7)+(-12)+(-17)

Explanation:

To find the first three terms, replace \displaystyle n with \displaystyle 3\displaystyle 4, and \displaystyle 5.

\displaystyle (8-5n) = (8-5(3))=-7

\displaystyle (8-5n) = (8-5(4))=-12

\displaystyle (8-5n) = (8-5(5))=-17

The first three terms are \displaystyle -7\displaystyle -12, and \displaystyle -17.

Example Question #41 : Pre Calculus

Indicate the first three terms of the following series:

\displaystyle \sum_{x=1}^{7}(4x-5)

Possible Answers:

\displaystyle (1)+(-3)+(-7)

\displaystyle (-1)+(3)+(7)

\displaystyle (1)+(-3)+(1)

\displaystyle (-1)+(3)+(-1)

\displaystyle (1)+(5)+(9)

Correct answer:

\displaystyle (-1)+(3)+(7)

Explanation:

In the arithmetic series, the first terms can be found by plugging \displaystyle 1\displaystyle 2, and \displaystyle 3 into the equation.

 

\displaystyle x=1

\displaystyle 4(1)-5 = -1

 

\displaystyle x=2

\displaystyle 4(2)-5 = 3

 

\displaystyle x=3

\displaystyle 4(3)-5 = 7

Example Question #2051 : High School Math

Indicate the first three terms of the following series:

\displaystyle \sum_{c=3}^{10}(8-5c)

Possible Answers:

\displaystyle (7)+(-12)+(-17)

\displaystyle (7)+(-12)+(17)

\displaystyle (-7)+(-12)+(-17)

\displaystyle (-7)+(12)+(-17)

\displaystyle (7)+(12)+(17)

Correct answer:

\displaystyle (-7)+(-12)+(-17)

Explanation:

In the arithmetic series, the first terms can be found by plugging in \displaystyle 3\displaystyle 4, and \displaystyle 5 for \displaystyle c.

 

\displaystyle c=3

\displaystyle 8-5(3) = -7

 

\displaystyle c=4

\displaystyle 8-5(4) = -12

 

\displaystyle c=5

\displaystyle 8-5(5) = -17

Example Question #3 : Finding Terms In A Series

Indicate the first three terms of the following series:

\displaystyle \sum_{m=-2}^{9}(2)^m

Possible Answers:

\displaystyle (-\frac{1}{4})+(-\frac{1}{2})+(1)

\displaystyle (\frac{1}{4})+(\frac{1}{2})+(0)

\displaystyle (4)+(2)+(1)

\displaystyle (-\frac{1}{4})+(-\frac{1}{2})+(-1)

\displaystyle (\frac{1}{4})+(\frac{1}{2})+(1)

Correct answer:

\displaystyle (\frac{1}{4})+(\frac{1}{2})+(1)

Explanation:

The first terms can be found by substituting \displaystyle -2\displaystyle -1, and \displaystyle 0 for \displaystyle m into the sum formula.

 

\displaystyle m=-2

\displaystyle (2)^{-2}=\frac{1}{4}

 

\displaystyle m=-1

\displaystyle (2)^{-1}=\frac{1}{2}

 

\displaystyle m=0

\displaystyle (2)^{0}=1

Example Question #4 : Finding Terms In A Series

Indicate the first three terms of the following series.

\displaystyle \sum_{b=2}^{11} \frac{1}{2}(4)^{b-2}

Possible Answers:

\displaystyle \frac{1}{2}\cdot 2\cdot 8

Not enough information

\displaystyle \frac{1}{4}\cdot 4\cdot 16

\displaystyle \frac{1}{2}+2+8

\displaystyle \frac{1}{4}+4+16

Correct answer:

\displaystyle \frac{1}{2}+2+8

Explanation:

The first terms can be found by substituting \displaystyle 2\displaystyle 3, and \displaystyle 4 in for \displaystyle b.

 

\displaystyle b=2

\displaystyle \frac{1}{2}(4)^{2-2}=\frac{1}{2}

 

\displaystyle b=3

\displaystyle \frac{1}{2}(4)^{3-2}=2

 

\displaystyle b=4

\displaystyle \frac{1}{2}(4)^{4-2}=8

Example Question #1 : Finding Terms In A Series

What is the sixth term when \displaystyle \left (\frac{1}{2}x-2 \right )^{10} is expanded?

Possible Answers:

\displaystyle -840x^5

\displaystyle -840x^6

\displaystyle 252x^5

\displaystyle 840x^6

\displaystyle -252x^5

Correct answer:

\displaystyle -252x^5

Explanation:

We will need to use the Binomial Theorem in order to solve this problem. Consider the expansion of \displaystyle (a+b)^n, where n is an integer. The rth term of this expansion is given by the following formula:

,

 where  is a combination. In general, if x and y are nonnegative integers such that x > y, then the combination of x and y is defined as follows: .

We are asked to find the sixth term of \displaystyle \left (\frac{1}{2}x-2 \right )^{10}, which means that in this case r = 6 and n = 10. Also, we will let \displaystyle a=\frac{1}{2}x and \displaystyle b=-2. We can now apply the Binomial Theorem to determine the sixth term, which is as follows:

 

Next, let's find the value of . According to the definition of a combination, 

\displaystyle =\frac{10\cdot 9\cdot 8\cdot 7\cdot 6}{5\cdot 4\cdot 3\cdot 2}=252.

Remember that, if n is a positive integer, then \displaystyle n!=n\cdot(n-1)\cdot(n-2)\cdot\cdot\cdot3\cdot2\cdot1. This is called a factorial. 

Let's go back to simplifying .

 

 

\displaystyle =252\cdot\left (\frac{1}{2} \right )^5\cdot x^5\cdot (-32) =252\cdot \frac{1}{32}\cdot-3 2\cdot x^5

\displaystyle =-252x^5

The answer is \displaystyle -252x^5.

 

Learning Tools by Varsity Tutors