All High School Math Resources
Example Questions
Example Question #2 : Finding Regions Of Concavity And Convexity
Let . What is the largest interval of x for which f(x) is concave upward?
This question asks us to examine the concavity of the function . We will need to find the second derivative in order to determine where the function is concave upward and downward. Whenever its second derivative is positive, a function is concave upward.
Let us begin by finding the first derivative of f(x). We will need to use the Product Rule. According to the Product Rule, if , then . In this particular problem, let and . Applying the Product rule, we get
In order to evaluate the derivative of , we will need to invoke the Chain Rule. According to the Chain Rule, the derivative of a function in the form is given by . In finding the derivative of , we will let and .
We can now finish finding the derivative of the original function.
To summarize, the first derivative of the funciton is .
We need the second derivative in order to examine the concavity of f(x), so we will differentiate one more time. Once again, we will have to use the Product Rule in conjunction with the Chain Rule.
In order to find where f(x) is concave upward, we must find where f''(x) > 0.
In order to solve this inequality, we can divide both sides by . Notice that is always positive (because e raised to any power will be positive); this means that when we divide both sides of the inequality by , we won't have to flip the sign. (If we divide an inequality by a negative quantity, the sign flips.)
Dividing both sides of the inequality by gives us
When solving inequalities with polynomials, we often need to factor.
Notice now that the expression will always be positive, because the smallest value it can take on is 3, when x is equal to zero. Thus, we can safely divide both sides of the inequality by without having to change the direction of the sign. This leaves us with the inequality
, which clearly only holds when .
Thus, the second derivative of f''(x) will be positive (and f(x) will be concave up) only when . To represent this using interval notation (as the answer choices specify) we would write this as .
The answer is .
Example Question #2091 : High School Math
At the point , is increasing or decreasing, and is it concave or convex?
Decreasing, concave
Decreasing, convex
Increasing, convex
Increasing, concave
The graph is undefined at point
Decreasing, convex
To find out if the function is increasing or decreasing, we need to look at the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
Anything to the zero power is one.
Now we plug in our given value and find out if the result is positive or negative. If it is positive, the function is increasing. If it is negative, the function is decreasing.
Therefore, the function is decreasing.
To find out if it is concave or convex, look at the second derivative. If the result is positive, it is convex. If it is negative, then it is concave.
To find the second derivative, we repeat the process using as our expression.
We're going to treat as .
Notice that since anything times zero is zero.
As stated before, anything to the zero power is one.
Since we get a positive constant, it doesn't matter where we look on the graph, as our second derivative will always be positive. That means that this graph is going to be convex at our given point.
Therefore, the function is decreasing and convex at our given point.
Example Question #3 : Finding Regions Of Concavity And Convexity
When , what is the concavity of the graph of ?
Increasing, concave
Decreasing, concave
Decreasing, convex
There is insufficient data to solve.
Increasing, convex
Increasing, convex
To find the concavity, we need to look at the first and second derivatives at the given point.
To take the first derivative of this equation, use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent:
Simplify:
Remember that anything to the zero power is equal to one.
The first derivative tells us if the function is increasing or decreasing. Plug in the given point, , to see if the result is positive (i.e. increasing) or negative (i.e. decreasing).
Therefore the function is increasing.
To find out if the function is convex, we need to look at the second derivative evaluated at the same point, , and check if it is positive or negative.
We're going to treat as since anything to the zero power is equal to one.
Notice that since anything times zero is zero.
Plug in our given value:
Since the second derivative is positive, the function is convex.
Therefore, we are looking at a graph that is both increasing and convex at our given point.
Example Question #2092 : High School Math
At the point where , is increasing or decreasing, and is it concave up or down?
Increasing, concave down
Decreasing, concave up
Decreasing, concave down
Increasing, concave up
There is no concavity at that point.
Increasing, concave up
To find if the equation is increasing or decreasing, we need to look at the first derivative. If our result is positive at , then the function is increasing. If it is negative, then the function is decreasing.
To find the first derivative for this problem, we can use the power rule. The power rule states that we lower the exponent of each of the variables by one and multiply by that original exponent.
Remember that anything to the zero power is one.
Plug in our given value.
Is it positive? Yes. Then it is increasing.
To find the concavity, we need to look at the second derivative. If it is positive, then the function is concave up. If it is negative, then the function is concave down.
Repeat the process we used for the first derivative, but use as our expression.
For this problem, we're going to say that since, as stated before, anything to the zero power is one.
Notice that as anything times zero is zero.
As you can see, there is no place for a variable here. It doesn't matter what point we look at, the answer will always be positive. Therefore this graph is always concave up.
This means that at our given point, the graph is increasing and concave up.
Example Question #2093 : High School Math
Find if the function is given by
To find the derivative at , we first take the derivative of . By the derivative rule for logarithms,
Plugging in , we get
Example Question #2094 : High School Math
Find the derivative of the following function at the point .
Use the power rule on each term of the polynomial to get the derivative,
Now we plug in
Example Question #2095 : High School Math
Let . What is ?
We need to find the first derivative of f(x). This will require us to apply both the Product and Chain Rules. When we apply the Product Rule, we obtain:
In order to find the derivative of , we will need to employ the Chain Rule.
We can factor out a 2x to make this a little nicer to look at.
Now we must evaluate the derivative when x = .
The answer is .
Example Question #2094 : High School Math
What is the first derivative of ?
To find the first derivative for this problem, we can use the power rule. The power rule states that we lower the exponent of each of the variables by one and multiply by that original exponent.
Remember that anything to the zero power is one.
Example Question #2096 : High School Math
This problem is best solved by using the power rule. For each variable, multiply by the exponent and reduce the exponent by one:
Treat as since anything to the zero power is one.
Remember, anything times zero is zero.
Example Question #2097 : High School Math
Give the average rate of change of the function on the interval .
The average rate of change of on interval is
Substitute: