All High School Math Resources
Example Questions
Example Question #1 : How To Find The Diameter Of A Sphere
What is the diameter of a sphere with a volume of ?
The volume of a sphere is determined by the following equation:
Example Question #691 : Geometry
Find the radius of a sphere whose surface area is .
Not enough information to solve
We know that the surface area of the spere is .
Rearrange and solve for .
Example Question #1 : How To Find The Radius Of A Sphere
What is the radius of a sphere that has a surface area of ?
The standard equation to find the area of a sphere is where denotes the radius. Rearrange this equation in terms of :
To find the answer, substitute the given surface area into this equation and solve for the radius:
Example Question #3 : How To Find The Radius Of A Sphere
Given that the volume of a sphere is , what is the radius?
The standard equation to find the volume of a sphere is
where denotes the radius. Rearrange this equation in terms of :
Substitute the given volume into this equation and solve for the radius:
Example Question #4 : How To Find The Radius Of A Sphere
What is the radius of a sphere with a volume of ?
Example Question #1 : Pre Calculus
What is the center and radius of the circle indicated by the equation?
A circle is defined by an equation in the format .
The center is indicated by the point and the radius .
In the equation , the center is and the radius is .
Example Question #2 : Pre Calculus
What is the shape of the graph indicated by the equation?
Hyperbola
Ellipse
Circle
Parabola
Ellipse
An ellipse has an equation that can be written in the format. The center is indicated by , or in this case .
Example Question #1 : Conic Sections
A conic section is represented by the following equation:
What type of conic section does this equation represent?
Parabola
Ellipse
Hyperbola
Circle
Hyperbola
The simplest way to know what kind of conic section an equation represents is by checking the coefficients in front of each variable. The equation must be in general form while you do this check. Luckily, this equation is already in general form, so it's easy to see. The general equation for a conic section is the following:
Assuming the term is 0 (which it usually is):
- If A equals C, the equation is a circle.
- If A and C have the same sign (but are not equal to each other), the equation is an ellipse.
- If either A or C equals 0, the equation is a parabola.
- If A and C are different signs (i.e. one is negative and one is positive), the equation is a hyperbola.
Example Question #1 : Pre Calculus
A conic section is represented by the following equation:
Which of the following best describes this equation?
vertical ellipse with center and a major axis length of
horizontal hyperbola with center of and asymptotes with slopes of and
vertical parabola with vertex and a vertical stretch factor of
vertical hyperbola with center and asymptotes with slopes of and
horizontal hyperbola with center and asymptotes with slopes of and
horizontal hyperbola with center of and asymptotes with slopes of and
First, we need to make sure the conic section equation is in a form we recognize. Luckily, this equation is already in standard form:
The first step is to determine the type of conic section this equation represents. Because there are two squared variables ( and ), this equation cannot be a parabola. Because the coefficients in front of the squared variables are different signs (i.e. one is negative and the other is positive), this equation must be a hyperbola, not an ellipse.
In a hyperbola, the squared term with a positive coefficient represents the direction in which the hyperbola opens. In other words, if the term is positive, the hyperbola opens horizontally. If the term is positive, the hyperbola opens vertically. Therefore, this is a horizontal hyperbola.
The center is always found at , which in this case is .
That leaves only the asymptotes. For a hyperbola, the slopes of the asymptotes can be found by dividing by (remember to always put the vertical value, , above the horizontal value, ). Remember that these slopes always come in pairs, with one being positive and the other being negative.
In this case, is 3 and is 2, so we get slopes of and .
Example Question #1 : Pre Calculus
Find the vertex for a parabola with equation
For any parabola of the form , the -coordinate of its vertex is
So here, we have
=
We plug this back into the original equation to find :
=
Certified Tutor