All High School Math Resources
Example Questions
Example Question #3 : Calculus I — Derivatives
Calculate .
The limit does not exist.
Substitute to rewrite this limit in terms of u instead of x. Multiply the top and bottom of the fraction by 2 in order to make this substitution:
(Note that as , .)
, so
, which is therefore the correct answer choice.
Example Question #4 : Calculus I — Derivatives
Calculate
The limit does not exist.
You can substitute to write this as:
Note that as ,
, since the fraction becomes indeterminate, we need to take the derivative of both the top and bottom of the fraction.
, which is the correct choice.
Example Question #1 : Derivatives
The speed of a car traveling on the highway is given by the following function of time:
Note that
What does this mean?
The car's speed is constantly changing at time .
The car takes seconds to reach its maximum speed.
The car is not accelerating at time .
The car is not moving at time .
The car is not decelerating at time .
The car is not moving at time .
The function gives you the car's speed at time . Therefore, the fact that means that the car's speed is at time . This is equivalent to saying that the car is not moving at time . We have to take the derivative of to make claims about the acceleration.
Example Question #2 : Derivatives
The speed of a car traveling on the highway is given by the following function of time:
Consider a second function:
What can we conclude about this second function?
It represents the change in distance over a given time .
It represents another way to write the car's speed.
It represents the total distance the car has traveled at time .
It has no relation to the previous function.
It represents the rate at which the speed of the car is changing.
It represents the rate at which the speed of the car is changing.
Notice that the function is simply the derivative of with respect to time. To see this, simply use the power rule on each of the two terms.
Therefore, is the rate at which the car's speed changes, a quantity called acceleration.
Example Question #2081 : High School Math
Define .
Give the interval(s) on which is decreasing.
is decreasing on those intervals at which .
We need to find the values of for which . To that end, we first solve the equation:
These are the boundary points, so the intervals we need to check are:
, , and
We check each interval by substituting an arbitrary value from each for .
Choose
increases on this interval.
Choose
decreases on this interval.
Choose
increases on this interval.
The answer is that decreases on .
Example Question #13 : Calculus I — Derivatives
Define .
Give the interval(s) on which is increasing.
is increasing on those intervals at which .
We need to find the values of for which . To that end, we first solve the equation:
These are the boundary points, so the intervals we need to check are:
, , and
We check each interval by substituting an arbitrary value from each for .
Choose
increases on this interval.
Choose
decreases on this interval.
Choose
increases on this interval.
The answer is that increases on
Example Question #2082 : High School Math
At what point does shift from increasing to decreasing?
It does not shift from increasing to decreasing
To find out where the graph shifts from increasing to decreasing, we need to look at the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
If we were to graph , would the y-value change from positive to negative? Yes. Plug in zero for y and solve for x.
Example Question #2083 : High School Math
At what point does shift from decreasing to increasing?
To find out where it shifts from decreasing to increasing, we need to look at the first derivative. The shift will happen where the first derivative goes from a negative value to a positive value.
To find the first derivative for this problem, we can use the power rule. The power rule states that we lower the exponent of each of the variables by one and multiply by that original exponent.
Remember that anything to the zero power is one.
Can this equation be negative? Yes. Does it shift from negative to positive? Yes. Therefore, it will shift from negative to positive at the point that .
Example Question #2084 : High School Math
At what value of does shift from decreasing to increasing?
It does not shift from decreasing to increasing
To find out when the function shifts from decreasing to increasing, we look at the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
Anything to the zero power is one.
From here, we want to know if there is a point at which graph changes from negative to positive. Plug in zero for y and solve for x.
This is the point where the graph shifts from decreasing to increasing.
Example Question #2085 : High School Math
At the point , is the function increasing or decreasing, concave or convex?
The function is undefined at that point
Decreasing, convex
Decreasing, concave
Increasing, convex
Increasing, concave
Decreasing, convex
First, let's find out if the graph is increasing or decreasing. For that, we need the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Plug in our given point for . If the result is positive, the function is increasing. If the result is negative, the function is decreasing.
Our result is negative, therefore the function is decreasing.
To find the concavity, look at the second derivative. If the function is positive at our given point, it is concave. If the function is negative, it is convex.
To find the second derivative we repeat the process, but using as our expression.
As you can see, our second derivative is a constant. It doesn't matter what point we plug in for ; our output will always be negative. Therefore our graph will always be convex.
Combine our two pieces of information to see that at the given point, the graph is decreasing and convex.