GRE Subject Test: Math : Algebra

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #242 : Gre Subject Test: Math

\displaystyle \frac{2}{3}\left | 9x+6\right | -2\geq 1

Possible Answers:

\displaystyle x\geq -\frac{1}{6} or \displaystyle x\leq -\frac{7}{6}

\displaystyle x\geq \frac{1}{6} and\displaystyle x\leq \frac{1}{2}

\displaystyle x\leq-\frac{1}{6} and\displaystyle x\geq- \frac{1}{2}

There is no solution.

Correct answer:

\displaystyle x\geq -\frac{1}{6} or \displaystyle x\leq -\frac{7}{6}

Explanation:

\displaystyle \frac{2}{3}\left | 9x+6\right | -2\geq 1

\displaystyle \frac{2}{3}\left | 9x+6 \right |\geq 3

\displaystyle \left | 9x+6 \right |\geq \frac{9}{2}

At this point, you've isolated the absolute value and can solve this problems for both cases, \displaystyle 9x+6\geq \frac{9}{2} and \displaystyle 9x+6\leq -\frac{9}{2}.  Beginning with the first case:

 

\displaystyle 9x+6\geq \frac{9}{2}

\displaystyle 9x+\frac{12}{2}\geq\frac{9}{2}

\displaystyle 9x\geq -\frac{3}{2}

\displaystyle x\geq -\frac{1}{6}

 

Then for the second case:

\displaystyle 9x+6\leq -\frac{9}{2}

\displaystyle 9x+\frac{12}{2}\leq -\frac{9}{2}

\displaystyle 9x\leq -\frac{21}{2}

\displaystyle x\leq -\frac{7}{6}

Example Question #61 : Algebra

\displaystyle \left | -4x-5 \right |< 11

Possible Answers:

\displaystyle x< -4

\displaystyle x< \frac{4}{5} or \displaystyle x>-2

\displaystyle x>-11 or \displaystyle x< -6

\displaystyle x> 4

\displaystyle x> -4 and \displaystyle x< \frac{3}{2}

Correct answer:

\displaystyle x> -4 and \displaystyle x< \frac{3}{2}

Explanation:

Since the absolute value with x in it is alone on one side of the inequality, you set the expression inside the absolute value equal to both the positive and negative value of the other side, 11 and -11 in this case. For the negative value -11, you must also flip the inequality from less than to a greater than. You should have two inequalities looking like this.

\displaystyle -4x-5< 11 and \displaystyle -4x-5>-11

Add 5 to both sides in each inequality.

\displaystyle -4x< 16 and \displaystyle -4x>-6

Divide by -4 to both sides of the inequality. Remember, dividing by a negative will flip both inequality symbols and you should have this.

\displaystyle x>-4 and \displaystyle x< \frac{3}{2}

Example Question #3 : Irrational Numbers

Evaluate: 

\displaystyle \left (2 + 3i \right )^{3}

Possible Answers:

\displaystyle -4 6+ 9i

\displaystyle -46 + 63 i

\displaystyle 8 + 9i

\displaystyle 8 - 27i

\displaystyle -62 + 63 i

Correct answer:

\displaystyle -4 6+ 9i

Explanation:

We can set \displaystyle A = 2, B = 3i in the cube of a binomial pattern:

\displaystyle \left ( A + B\right ) ^{3} = A ^{3} + 3 A^{2 }B + 3AB^{2} + B^{3}

\displaystyle = 2 ^{3} + 3 \cdot 2 ^{2 } \cdot 3i + 3 \cdot 2 \cdot (3i)^{2} + (3i)^{3}

\displaystyle = 2^{3} + 3 \cdot 2^{2} \cdot 3i + 3 \cdot 2 \cdot 3 ^{2}\cdot i^{2} + 3^{3} \cdot i^{3}

\displaystyle = 8 + 36i + 54 i^{2} + 27 i^{3}

\displaystyle = 8 + 36i + 54 (-1) + 27 (-i)

\displaystyle = 8 + 36i - 54 - 27 i

\displaystyle = -46 + 9i

Example Question #1 : Imaginary Numbers

Simplify the following product:

\displaystyle {} (5+3i)(-2+i)

Possible Answers:

\displaystyle {} -13+11i

\displaystyle {} -10+3i

\displaystyle {} -13-i

\displaystyle {}-7-i

Correct answer:

\displaystyle {} -13-i

Explanation:

Multiply these complex numbers out in the typical way:

\displaystyle {}(5+3i)(-2+i) = -10+5i-6i+3i^2

and recall that \displaystyle i^2=-1 by definition. Then, grouping like terms we get

\displaystyle {} (-10-3)+(5i-6i) = -13-i

which is our final answer.

Example Question #1 : Imaginary Numbers & Complex Functions

Simplify:

\displaystyle (5+8i)(6-2i)

Possible Answers:

\displaystyle 25+8i

\displaystyle 46+38i

\displaystyle 16+32i

\displaystyle 7+16i

Correct answer:

\displaystyle 46+38i

Explanation:

Start by using FOIL. Which means to multiply the first terms together then the outer terms followed by the inner terms and lastly, the last terms.

\displaystyle (5+8i)(6-2i)=30-10i+48i-16i^2

Remember that \displaystyle i=\sqrt-1, so \displaystyle i^2=-1.

Substitute in \displaystyle -1 for \displaystyle i^2

\displaystyle 30-10i+48i-16i^2=30+38i-16(-1)=30+38i+16=46+38i

Example Question #1 : Imaginary Numbers & Complex Functions

Simplify:

\displaystyle (2+5i)(-8-i)

Possible Answers:

\displaystyle 12+6i

\displaystyle 42+11i

\displaystyle -11-42i

\displaystyle -18-5i

Correct answer:

\displaystyle -11-42i

Explanation:

Start by using FOIL. Which means to multiply the first terms together then the outer terms followed by the inner terms and lastly, the last terms.

\displaystyle (2+5i)(-8-i)=-16-2i-40i-5i^2

Remember that \displaystyle i=\sqrt-1, so \displaystyle i^2=-1.

Substitute in \displaystyle -1 for \displaystyle i^2

\displaystyle -16-2i-40i-5i^2=-16-42i-5(-1)=-16+5-42i=-11-42i

Example Question #3 : Imaginary Numbers & Complex Functions

Simplify:

\displaystyle (2+6i)(5+3i)

Possible Answers:

\displaystyle -36-8i

\displaystyle 12-8i

\displaystyle -8+36i

\displaystyle 36-8i

Correct answer:

\displaystyle -8+36i

Explanation:

Start by using FOIL. Which means to multiply the first terms together then the outer terms followed by the inner terms and lastly, the last terms.

\displaystyle (2+6i)(5+3i)=10+6i+30i+18i^2

Remember that \displaystyle i=\sqrt-1, so \displaystyle i^2=-1.

Substitute in \displaystyle -1 for \displaystyle i^2

\displaystyle 10+6i+30i+18i^2=10+36i+18(-1)=10-18+36i=-8+36i

Example Question #1 : Imaginary Roots Of Negative Numbers

Solve for \displaystyle a and \displaystyle b

\displaystyle ai^{93}+bi^{35}+ai^{24}-bi^{86}=40+20i

Possible Answers:

\displaystyle a=15, b=15

\displaystyle a=40, b=20

\displaystyle a=10, b=30

\displaystyle a=30, b=10

\displaystyle a=20, b=40

Correct answer:

\displaystyle a=30, b=10

Explanation:

Remember that 

\displaystyle i = \sqrt{-1}\\ i^2 = \sqrt{-1}^2 = -1\\ i^3 = i^2\cdot i = -1 \cdot i = -i\\ i^4 = i^2 \cdot i^2 = (-1)\cdot(-1) = 1\\ i^5 = i^4\cdot i = 1\cdot i = i = \sqrt{-1}\\ i^6 = i^4\cdot i^2 = 1\cdot i^2 = i^2 =-1

So the powers of \displaystyle i are cyclic. This means that when we try to figure out the value of an exponent of \displaystyle i, we can ignore all the powers that are multiples of \displaystyle 4 because they end up multiplying the end result by \displaystyle 1, and therefore do nothing.

This means that 

\displaystyle ai^{93} + bi^{35} + ai^{24} - bi^{86}\\ = ai^{92+1} + bi^{32+3} + ai^{24+0} - bi^{84+2}\\ = ai^{92}\cdot i^1 + bi^{32}\cdot i^3 + ai^{24}\cdot i^0 - bi^{84}\cdot i^2\\ =a(i^4)^{23}\cdot i^1 + b(i^4)^8\cdot i^3 + a(i^4)^6\cdot i^0 - b(i^4)^{21}\cdot i^2\\ = a (1^{23})\cdot i + b(1^8)\cdot i^3 + a(1^6) - b(1^{21})\cdot i^2

Now, remembering the relationships of the exponents of \displaystyle i, we can simplify this to:

\displaystyle ai - bi + a - (-b) = ai-bi+a+b\\ = (a+b) + (a-b)i = 40+20i

Because the elements on the left and right have to correspond (no mixing and matching!), we get the relationships: 

\displaystyle a+b=40

\displaystyle a-b=10

No matter how you solve it, you get the values \displaystyle a=30\displaystyle b=10.

Example Question #1 : Imaginary Roots Of Negative Numbers

Simplify: \displaystyle \sqrt{-243}

Possible Answers:

\displaystyle -9i\sqrt{3}

\displaystyle 9i

\displaystyle 9i\sqrt{3}

None of the Above

Correct answer:

\displaystyle 9i\sqrt{3}

Explanation:

Step 1: Split the \displaystyle \sqrt{-243} into \displaystyle \sqrt{243}\cdot\sqrt{-1}.

Step 2: Recall that \displaystyle \sqrt{-1}=i, so let's replace it.

We now have: \displaystyle \sqrt{243}\cdot i.

Step 3: Simplify \displaystyle \sqrt{243}. To do this, we look at the number on the inside.

\displaystyle 243=3\cdot3\cdot3\cdot3\cdot3.

Step 4: Take the factorization of \displaystyle 243 and take out any pairs of numbers. For any pair of numbers that we find, we only take \displaystyle 1 of the numbers out.

We have a pair of \displaystyle 3's, so a \displaystyle 3 is outside the radical.
We have another pair of \displaystyle 3's, so one more three is put outside the radical.

We need to multiply everything that we bring outside: \displaystyle 3*3=9

Step 5: The \displaystyle i goes with the 9...\displaystyle 9i

Step 6: The last \displaystyle 3 after taking out pairs gets put back into a square root and is written right after the \displaystyle i

It will look something like this: \displaystyle 9i\sqrt{3}

Example Question #1 : Imaginary Numbers & Complex Functions

\displaystyle Simplify: 5\sqrt{12i^{2}}

Possible Answers:

\displaystyle 5\sqrt{-12}

\displaystyle 5i\sqrt{12}

\displaystyle 2i\sqrt{3}

\displaystyle 10i\sqrt{}3

Correct answer:

\displaystyle 10i\sqrt{}3

Explanation:

There are two ways to simplify this problem: 

Method 1: 

\displaystyle We\ know\ that\ i^2=-1,\ when\ we\ replace\ that\ we\ get:

\displaystyle 5\sqrt{-12}

\displaystyle =5i\sqrt{12}(take\ the\ i\ out)

\displaystyle =5i\sqrt{4}\sqrt{3} (the\ perfect\ square\ 4\ will\ go\ into\ 12)

\displaystyle =10i{\sqrt{3}}\ reduce

Method 2: 

\displaystyle We\ know\ that\ the\ square\ root\ of\ anything\ squared\ is\ just\ itself

\displaystyle \sqrt{i^2}=i

\displaystyle 5\sqrt{12i^{2}}=5i\sqrt{12}

\displaystyle =5i\sqrt{4}\sqrt{3} (the\ perfect\ square\ 4\ will\ go\ into\ 12)

\displaystyle =10i{\sqrt{3}}\ reduce

 

 

Learning Tools by Varsity Tutors