GRE Subject Test: Math : Algebra

Study concepts, example questions & explanations for GRE Subject Test: Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Solving Inequalities

\displaystyle x + 0.8\leq -0.5

Possible Answers:

\displaystyle x\leq -1.3

\displaystyle x\leq 0.3

\displaystyle x\leq -0.3

\displaystyle x\leq 1.3

Correct answer:

\displaystyle x\leq -1.3

Explanation:

\displaystyle x + 0.8\leq -0.5

To isolate the variable, subtract \displaystyle 0.8 from both sides of the inequality.

\displaystyle x + 0.8-0.8 \leq -0.5-0.8

\displaystyle x\leq -1.3

Example Question #12 : Solving Inequalities

\displaystyle 8x-10 > 4x - 6

Possible Answers:

\displaystyle x>1

\displaystyle x< 3

\displaystyle x> -1

\displaystyle x>3

Correct answer:

\displaystyle x>1

Explanation:

\displaystyle 8x-10 > 4x-6

Subtract \displaystyle 4x from both sides of the equation

\displaystyle 8x-4x-10 > 4x-4x-6

\displaystyle 4x -10> -6

Add \displaystyle 10 to both sides of the equation.

\displaystyle 4x-10 + 10 = -6 + 10

\displaystyle 4x > 4

Divide both sides by 4.

\displaystyle \frac{4x}{4} >\frac{4}{4}

\displaystyle x>1

Example Question #221 : Gre Subject Test: Math

\displaystyle 0.6x +1.2 > 4.8

Possible Answers:

\displaystyle x>10

\displaystyle x>6

\displaystyle x< 6

\displaystyle x< 10

Correct answer:

\displaystyle x>6

Explanation:

\displaystyle 0.6x + 1.2 > 4.8

\displaystyle 10 (0.6x +1.2) > 4.8 (10)

\displaystyle 6x + 12 > 48

\displaystyle 6x + 12 - 12 = 48 -12

\displaystyle 6x > 36

\displaystyle \frac{6x}{6}> \frac{36}{6}

\displaystyle x> 6

Example Question #222 : Gre Subject Test: Math

\displaystyle 12\left ( \frac{x+3}{2} -\frac{3x-2}{4}\right ) < 12x-1

Possible Answers:

\displaystyle x> \frac{5}{3}

\displaystyle x< \frac{1}{2}

\displaystyle x< -2

\displaystyle x < 2

Correct answer:

\displaystyle x> \frac{5}{3}

Explanation:

\displaystyle 12\left ( \frac{x+3}{2} -\frac{3x-2}{4}\right ) < 12x-1

\displaystyle 12\left ( \frac{2x+6}{4} -\frac{3x-2}{4}\right ) < 12x-1

\displaystyle 12\left ( \frac{-x+8}{4}\right ) < 12x-1

\displaystyle 3(-x+8) < 12x-1

\displaystyle -3x +24 < 12x-1

\displaystyle 25 < 15x

\displaystyle x>\frac{25}{15} \rightarrow x>\frac{5}{3}

Example Question #223 : Gre Subject Test: Math

Solve for the values of x that satisfies the equation: .

Possible Answers:

\displaystyle x\geq6

\displaystyle x< 6

\displaystyle x\leq6

\displaystyle x< -6

Correct answer:

\displaystyle x\leq6

Explanation:

Step 1: Move the constant from the left side to the right side. We have \displaystyle -3, so we will add 3 to both sides of the equation to move the constant over.



Step 2: Divide by the coefficient in front of x.



The values of x that satisfy the equation are  (or \displaystyle x\leq6)



Example Question #224 : Gre Subject Test: Math

\displaystyle 7+4x>-3x+4

Possible Answers:

\displaystyle x=3/7

\displaystyle x< 3/7

\displaystyle x>-3/7

\displaystyle x< -3/7

\displaystyle x>3/7

Correct answer:

\displaystyle x>-3/7

Explanation:

This problem involves solving the inequality. 

\displaystyle 7+4x>-3x+4

Add 3x to both sides

\displaystyle 7+7x>+4

Subtract 7 to each side

\displaystyle 7x>-3

divide both sides by7

\displaystyle x>-3/7

Example Question #42 : Algebra

\displaystyle 31>7x+3>2x+6

\displaystyle 4>x>3/5

Possible Answers:

\displaystyle x< 4

\displaystyle 3/2>x>1/2

\displaystyle x>3/5

Unsolvable

\displaystyle 4>x>5/3

Correct answer:

\displaystyle 3/2>x>1/2

Explanation:

To solve this inequality you must first break apart the inequality into two seperate inequalities.

\displaystyle 31>7x+3

subtract the three from both sides

\displaystyle 28>7x

divide seven on both sides

\displaystyle 4>x

 

\displaystyle 7x+3>2x+6

subtract 2x from both sides

\displaystyle 5x+3>6

Subtract 3 from both sides

\displaystyle 5x>3

Divide by 5 on both sides

\displaystyle 5x>3

Example Question #41 : Algebra

\displaystyle Solve\ for\ x: 3x-12>-9

Possible Answers:

\displaystyle x>-7

\displaystyle x< 1

\displaystyle x< -7

\displaystyle x>1

Correct answer:

\displaystyle x>1

Explanation:

\displaystyle 3x-12>-9\ Add\ 12\ to\ both\ sides\\ \\

\displaystyle 3x>3\ divide\ both\ sides\ by\ 3

\displaystyle x>1

Example Question #42 : Algebra

\displaystyle Solve\ for\ x:\\

\displaystyle 5-2x>13

Possible Answers:

\displaystyle x>-4

\displaystyle x>-9

\displaystyle x< -9

\displaystyle x< -4

Correct answer:

\displaystyle x< -4

Explanation:

\displaystyle 5-2x>13\ subtract\ 5\ from\ both\ sides

\displaystyle -2x>8\ divide\ both\ sides\ by\ (-2)

\displaystyle x< -4\ when\ dividing\ by\ a\ negative\ make\ sure\ you\ flip\ the\ inequality\ sign

\displaystyle We\ flip\ the\ inequality\ sign\ because\ the\ sign\ on\ both\ sides\ changed.

Example Question #21 : Solving Inequalities

\displaystyle 4x + 12 < x + 21

Possible Answers:

all values of \displaystyle x where \displaystyle x> 3

all values of \displaystyle x where \displaystyle x\leq 3

all values of \displaystyle x where \displaystyle x\geq 3

all values of \displaystyle x where \displaystyle x< 3

Correct answer:

all values of \displaystyle x where \displaystyle x< 3

Explanation:

\displaystyle 4x + 12 < x + 21

Subtract 12 from both sides of the inequality.

\displaystyle 4x + 12 - 12< x + 21 - 12

\displaystyle 4x < x + 9

Subtract \displaystyle x from both sides of the inequality.

\displaystyle 4x - x< x-x -9

\displaystyle 3x < 9

Divide both sides by 3.

\displaystyle \frac{3x}{3} < \frac{9}{3}

\displaystyle x < 3

Learning Tools by Varsity Tutors