AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #721 : Ap Calculus Ab

Differentiate

\displaystyle y = xe^{2x^2 +1}

Possible Answers:

\displaystyle e^{2x^2+1}(1+4x^2)

\displaystyle 4x^3e^{2x^2+1}

\displaystyle 4x^3(1+e^{2x^2+1})

\displaystyle e^{2x^2+1}+4x

\displaystyle e^{2x^2+1}+x-1

Correct answer:

\displaystyle e^{2x^2+1}(1+4x^2)

Explanation:

\displaystyle y = xe^{2x^2 +1}

The function is a product of the functions \displaystyle x and \displaystyle e^{2x^2+1}, so apply the product rule: 

 

\displaystyle \frac{dy}{dx}=e^{2x^2+1}\left(\frac{d}{dx}x \right ) +x\left(\frac{d}{dx}e^{2x^2+1} \right )

The derivative in the first term is \displaystyle 1. The derivative of the second term requires the use of the chain rule. 

 

\displaystyle \frac{dy}{dx}=e^{2x^2+1} +x\left(4xe^{2x^2+1} \right )

 

The derivative in the second term required the use of the chain rule. First we write the derivative of \displaystyle e^{2x^2+1} with respect to the function \displaystyle 2x^2+1, which is just \displaystyle e^{2x^2+1}. Then we multiply by the derivative of \displaystyle 2x^2+1 with respect to \displaystyle x, which is just \displaystyle 4x

 

\displaystyle \frac{d}{dx}e^{2x^2+1}=4xe^{2x^2+1}

\displaystyle \frac{dy}{dx}=e^{2x^2+1} +4x^2e^{2x^2+1} = e^{2x^2+1}(1+4x^2)

 

Therefore, 

 \displaystyle \frac{dy}{dx}= e^{2x^2+1}(1+4x^2)

 

Example Question #239 : Computation Of The Derivative

Find the derivative of the following equation:

\displaystyle h(x)=\frac{6+x^{3}}{x}

Possible Answers:

\displaystyle 2x+6x^{-2}

\displaystyle 2x-6x^{2}

\displaystyle 2x-6x^{-2}

\displaystyle 3x^{2}

\displaystyle 2x

Correct answer:

\displaystyle 2x-6x^{-2}

Explanation:

Given that there are 2 terms in the numerator and only one in the denominator, one can split up the equation into 2 separate derivatives: 

\displaystyle \frac{d}{dx}(\frac{6}{x})+\frac{d}{dx}(\frac{x^{3}}{x})

Now we simplify these, and proceed to solve: 

\displaystyle \frac{d}{dx}(6x^{-1})+\frac{d}{dx}(x^{2}) = 2x-6x^{-2}

Example Question #240 : Computation Of The Derivative

Find the derivative of the following equation:

\displaystyle h(x)=x\ln(x)

Possible Answers:

\displaystyle \ln(x)+1

\displaystyle \ln(x)-1

None of the other answers.

\displaystyle \frac{-1}{x}

\displaystyle \frac{1}{x}

Correct answer:

\displaystyle \ln(x)+1

Explanation:

Because this problem contains two functions multiplied together that can't be simplified any further, it calls for the product rule, which states thatProduct rule

By applying this rule to the equation 

\displaystyle x\ln(x) 

we get 

\displaystyle \frac{d}{dx}(x\ln (x))= ((1)\ln (x)+(x)(\frac{1}{x}))=\ln(x)+1

Example Question #31 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the following function:

\displaystyle h(x)=\frac{x}{x^{2}+1}

Possible Answers:

None of the other answers

\displaystyle \ln(x+1)

\displaystyle \frac{1}{2x}

\displaystyle \frac{1+x^{2}}{(x^{2}+1)^{2}}

\displaystyle \frac{1-x^{2}}{x^{4}+2x^{2}+1}

Correct answer:

\displaystyle \frac{1-x^{2}}{x^{4}+2x^{2}+1}

Explanation:

Because we are dealing with a quotient that cannot be simplified, we use the quotient rule, which states that if 

\displaystyle h(x)=\frac{f(x)}{g(x)}

\displaystyle h{}'(x)=\frac{(g(x)f{}'(x)-f(x)g{}'(x))}{(g(x))^{2}}.

By observing the given equation 

\displaystyle h(x)=\frac{x}{x^{2}+1},

we can see that 

\displaystyle f(x)=x 

and 

\displaystyle g(x)=x^{2}+1.

 

Therefore, the derivative is 

\displaystyle \frac{(x^{2}+1)(1)-(x)(2x)}{(x^{2}+1)^{2}}=\frac{1-x^{2}}{x^{4}+2x^{2}+1}.

Example Question #242 : Computation Of The Derivative

Find the derivative of the following equation:

\displaystyle h(x)=\frac{x}{\ln (x)}

Possible Answers:

\displaystyle \frac{\ln (x)}{(\ln (x)-1)^{2}}

\displaystyle \ln(x)-1

\displaystyle \frac{\ln ^{2}(x)}{\ln (x)-1}

\displaystyle \frac{\ln (x)-1}{\ln ^{2}(x))}

None of the other answers.

Correct answer:

\displaystyle \frac{\ln (x)-1}{\ln ^{2}(x))}

Explanation:

Because we are differentiating a quotient that cannot be simplified, we must use the quotient rule, which states that if

\displaystyle h(x)=\frac{f(x)}{g(x)},

then 

\displaystyle h{}'(x)=\frac{g(x)f{}'(x)-f(x)g{}'(x)}{(g(x))^{2}}.

By observing the given equation, 

\displaystyle h(x)=\frac{x}{\ln (x)},

we see that in this case, 

\displaystyle f(x)=x 

and 

\displaystyle g(x)=\ln(x).

Given this information, the quotient rule tells us that 

\displaystyle h{}'(x)=\frac{\ln (x)(1)-(x)(\frac{1}{x})}{(\ln (x)^{2})}=\frac{\ln (x)-1}{\ln ^{2}(x)}.

Example Question #31 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the following equation:

\displaystyle h(x)=\sin( \frac{x^{2}}{x+1})

Possible Answers:

\displaystyle \cos(\frac{x^{2}}{x+1})

\displaystyle \frac{x(x+2)}{(x+1)^{2}}\cos(\frac{x^{2}}{x+1})

\displaystyle \frac{x(x+2)}{(x+3)^{2}}\cos(\frac{x^{2}}{x+1})

None of the other answers.

\displaystyle 2x\cos(\frac{x^{2}}{x+1})

Correct answer:

\displaystyle \frac{x(x+2)}{(x+1)^{2}}\cos(\frac{x^{2}}{x+1})

Explanation:

This problem is a quotient rule inside of a chain rule. First, let's look at the chain rule:

Chain rule.

Given this, we can deduce that since 

\displaystyle h(x)=\sin(\frac{x^{2}}{x+1})

\displaystyle f(x)=\sin(x) 

and 

\displaystyle g(x)=\frac{x^{2}}{x+1}.

By plugging these into the chain rule formula, we get 

\displaystyle (f o g(x)){}'=\cos(\frac{x^{2}}{x+1})((\frac{d}{dx}(\frac{x^{2}}{x+1}))) 

To find the derivative of the

second term, we must use the quotient rule, which states that the the derivative

of a quotient is ((denominator)(derivative of numerator)-(numerator)(derivative

of denominator))/(denominator squared). Using this rules we find that 

\displaystyle \frac{d}{dx}(\frac{x^{2}}{x+1})=\frac{((x+1)(2x)-(x^{2})(1))}{(x+1)^{2}}=\frac{x(x+2)}{(x+1)^{2}}.

By plugging this back in, we find the final derivative to be 

\displaystyle \frac{x(x+2)}{(x+1)^{2}}\cos(\frac{x^{2}}{x+1})

Example Question #241 : Computation Of The Derivative

Find the derivative of the function:

\displaystyle f=\frac{\tan(x)+5}{x}

Possible Answers:

\displaystyle \frac{x\sec(x)-\tan(x)-5}{x^2}

\displaystyle \frac{x\sec^2(x)-\tan(x)-5}{x}

\displaystyle \frac{x\sec^2(x)-\tan(x)-5}{x^2}

\displaystyle \frac{x\sec^2(x)-\tan(x)+5}{x^2}

Correct answer:

\displaystyle \frac{x\sec^2(x)-\tan(x)-5}{x^2}

Explanation:

The derivative of the function is equal to

\displaystyle f'=\frac{x\sec^2(x)-\tan(x)-5}{x^2}

and was found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \frac{f(x)}{g(x)}=\frac{g(x)f'(x)-f(x)g'(x)}{g(x)^2}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \tan(x)=\sec^2(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a

Example Question #242 : Computation Of The Derivative

Find the derivative of the function 

\displaystyle f=\frac{e^x}{\cos{x}}

Possible Answers:

\displaystyle f'=\frac{e^x\cos{x}+e^x\cos{x}}{\cos^2{x}}

\displaystyle f'=\frac{e^x\cos{x}+e^x\sin{x}}{\cos{x}}

\displaystyle f'=\frac{e^x\cos{x}+e^x\sin{x}}{\cos^2{x}}

\displaystyle f'=\frac{e^x\cos{x}-e^x\sin{x}}{\cos^2{x}}

Correct answer:

\displaystyle f'=\frac{e^x\cos{x}+e^x\sin{x}}{\cos^2{x}}

Explanation:

To find the derivative of a quotient, you apply the quotient rule:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(\frac{f(x)}{g(x)})=\frac{{f'(x)g(x)-f(x)g'(x)}}{(g(x))^2}

In our case, we have \displaystyle f(x)=e^x and \displaystyle g(x)=\cos{x}

Using the function from the problem statement and taking its derivative, we get

\displaystyle f'=\frac{e^x\cos{x}+e^x\sin{x}}{\cos^2{x}}

 

Example Question #243 : Computation Of The Derivative

Find the derivative of the function

\displaystyle f=\frac{\cos{x}}{2x^2}

Possible Answers:

\displaystyle f'=\frac{-2x^2\sin{x}-4x\cos{x}}{2x^4}

\displaystyle f'=\frac{-2x^2\sin{x}-4x\cos{x}}{4x^4}

\displaystyle f'=\frac{-2x^2\sin{x}-4x\sin{x}}{4x^4}

\displaystyle f'=\frac{-x^2\sin{x}-4x\cos{x}}{2x^4}

Correct answer:

\displaystyle f'=\frac{-2x^2\sin{x}-4x\cos{x}}{4x^4}

Explanation:

To find the derivative of a quotient, you apply the quotient rule:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(\frac{f(x)}{g(x)})=\frac{{f'(x)g(x)-f(x)g'(x)}}{(g(x))^2}

In our case, we have \displaystyle f(x)=\cos{x} and \displaystyle g(x)=2x^2

Using the function from the problem statement and taking its derivative, we get

\displaystyle f'=\frac{-2x^2\sin{x}-4x\cos{x}}{4x^4}

Example Question #244 : Computation Of The Derivative

Find the derivative of the function 

\displaystyle f=2x\sin{x}+2\cos{x}

Possible Answers:

\displaystyle f'=2x\cos{x}

\displaystyle f'=2x\cos{x}+2\sin{x}

\displaystyle f'=-2x\cos{x}

\displaystyle f'=2\cos{x}

Correct answer:

\displaystyle f'=2x\cos{x}

Explanation:

To find the derivative of the function, you must apply the product rule. The product rule is as follows

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(f(x)g(x))=f'(x)g(x)+f(x)g'(x)

In the first part of the expression, we have \displaystyle f(x)=2x and \displaystyle g(x)=\sin{x}, and in the second part of the expression we have \displaystyle f(x)=2 and \displaystyle g(x)=\cos{x}

Using the product rule from above, we have 

\displaystyle f'=2\sin{x}+2x\cos{x}-2\sin{x}=2x\cos{x}

Learning Tools by Varsity Tutors