AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #731 : Ap Calculus Ab

Find the derivative of the function

\displaystyle f=5x^2\tan{x}

Possible Answers:

\displaystyle f'=10x\tan{x}-5x^2\sec^2{x}

\displaystyle f'=10\tan{x}+5x^2\sec^2{x}

\displaystyle f'=10x\tan{x}+5x^2\sec^2{x}

\displaystyle f'=10x\tan{x}+5x^2\sec{x}

Correct answer:

\displaystyle f'=10x\tan{x}+5x^2\sec^2{x}

Explanation:

To find the derivative of the function, you must apply the product rule. The product rule is as follows

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(f(x)g(x))=f'(x)g(x)+f(x)g'(x)

In this case, we have \displaystyle f(x)=5x^2 and \displaystyle g(x)=\tan{x}

Using the product rule from above, we have 

\displaystyle f'=10x\tan{x}+5x^2\sec^2{x}

Example Question #42 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative.

\displaystyle \frac{2x+1}{x^2}

Possible Answers:

\displaystyle x-1

\displaystyle 2x+1

\displaystyle x

\displaystyle \frac{1}{x}

Correct answer:

\displaystyle x-1

Explanation:

Use the quotient rule to find the derivative.

\displaystyle \frac{d}{dx}\frac{2x+1}{x^2}=\frac{x^2(2)-2x(2x+1)}{2x}

\displaystyle =\frac{2x^2-4x^2-2x}{2x}

\displaystyle =\frac{-2x^2-2x}{2x}

\displaystyle =\frac{-x^2-x}{x}=x-1

Example Question #731 : Ap Calculus Ab

Find the derivative.

\displaystyle x^2\sin (x)

Possible Answers:

\displaystyle x^2\cos (x)+2x\sin (x)

\displaystyle x\cos (x)+2x\cos (x)

\displaystyle x\cos (x)+2x\sin (x)

\displaystyle x^2\cos (x)+2x\cos (x)

Correct answer:

\displaystyle x^2\cos (x)+2x\sin (x)

Explanation:

Use the product rule to find the derivative.

\displaystyle x^2\cos (x)+2x\sin (x)

Example Question #733 : Ap Calculus Ab

Find the derivative of the function 

\displaystyle f(x)=4x^3+10x

Possible Answers:

\displaystyle f'(x)=12x^2+10x

\displaystyle f'(x)=12x^2+10

\displaystyle f'(x)=12x^3+10

\displaystyle f'(x)=x^4+2x^2

Correct answer:

\displaystyle f'(x)=12x^2+10

Explanation:

To find the derivative of a sum, we take the derivative of each part of the sum independently. Additionally, we apply the rules of differentiation that tell us 

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}x^n=nx^{n-1}

Differentiating the function from the problem statement, we get

\displaystyle f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}(4x^3)+\frac{\mathrm{d} }{\mathrm{d} x}(10x)

\displaystyle f'(x)=12x^2+10

 

 

Example Question #734 : Ap Calculus Ab

Find the derivative of the function using the product and quotient rules:

\displaystyle f(x)=\frac{5x\tan(x)}{\cos(x)}

Possible Answers:

Correct answer:

Explanation:

Using the product and quotient rules to solve the problem, we get

\displaystyle f'(x)=\frac{\cos(x)*\frac{\mathrm{d} }{\mathrm{d} x}(5x\tan(x))-(5x\tan(x))*\frac{\mathrm{d} }{\mathrm{d} x}(\cos(x))}{\cos^2(x)}

The product rule is used when taking \displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(5x\tan(x))=\frac{\mathrm{d} }{\mathrm{d} x}(5x)*\tan(x)+5x*\frac{\mathrm{d} }{\mathrm{d} x}\tan(x)

The final answer is

Example Question #735 : Ap Calculus Ab

Find the derivative of the function using the product rule:

\displaystyle f(x)=(x^3+3)(2x-1)

Possible Answers:

\displaystyle f'(x)=8x^3-3x^2+6

\displaystyle f'(x)=8x^2+3x^2+6

\displaystyle f'(x)=11x^3+4

\displaystyle f'(x)=8x+3x^2+5

Correct answer:

\displaystyle f'(x)=8x^3-3x^2+6

Explanation:

Using the product rule, we ge\displaystyle f'(x)=8x^3-3x^2+6t

\displaystyle f'(x)=(2x-1)*\frac{\mathrm{d} }{\mathrm{d} x}(x^3+3)+(x^3+3)*\frac{\mathrm{d} }{\mathrm{d} x}(2x-1)

Simplifying, 

\displaystyle f'(x)=3x^2(2x-1)+2(x^3+3)

\displaystyle f'(x)=6x^3-3x^2+2x^3+6

\displaystyle f'(x)=8x^3-3x^2+6

 

 

Example Question #51 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of \displaystyle y=5x^3e^x

Possible Answers:

\displaystyle 15x^2e^x+5x^3xe

\displaystyle 15x^2e^x+5x^3

none of these answers

\displaystyle 5x^2e^x(3+x)

\displaystyle 15x^2e^x

Correct answer:

\displaystyle 5x^2e^x(3+x)

Explanation:

So whenever you have two distinct functions that are multiplied by each other, you will be using the product rule. So when looking at a function, see if you can separate it into two. In this case, we can see there is the function:

\displaystyle 5x^3 and the function \displaystyle e^x.

So lets call those \displaystyle f(x) and g(x)

Then the product rule is that the derivative of \displaystyle f(x)g(x ) is:

\displaystyle f'(x)g(x)+f(x)g'(x).

Then calculate to find:

\displaystyle f'(x)=15x^2 and \displaystyle g'(x)=e^x to give an answer of:

\displaystyle f'(x)g(x)+f(x)g'(x)=15x^2e^x+5x^3e^x

which simplifies to:

\displaystyle 5x^2e^x(3+x)

Example Question #51 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the following function:

\displaystyle f=2x^3+5x^2+x-4

Possible Answers:

\displaystyle f'=6x^2+10x+x-4

\displaystyle f'=6x^2+11

\displaystyle f'=6x^3+10x^2+x

\displaystyle f'=6x^2+10x+1

Correct answer:

\displaystyle f'=6x^2+10x+1

Explanation:

To find the derivative of the sum, we take the derivative of each term independently, then add them all up. Further, we use the rule

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(x^n)=nx^{n-1}

\displaystyle f'=\frac{\mathrm{d} }{\mathrm{d} x}(2x^3)+\frac{\mathrm{d} }{\mathrm{d} x}(5x^2)+\frac{\mathrm{d} }{\mathrm{d} x}(x)+\frac{\mathrm{d} }{\mathrm{d} x}(-4)

\displaystyle f'=6x^2+10x+1

Example Question #52 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the following function

\displaystyle f=5x\cos(x)

Possible Answers:

\displaystyle f'=5\cos(x)+5\sin(x)

\displaystyle f'=5\cos(x)-5x\sin(x)

\displaystyle f'=5\cos(x)

\displaystyle f'=5\cos(x)+5x\sin(x)

Correct answer:

\displaystyle f'=5\cos(x)-5x\sin(x)

Explanation:

To find the derivative of the function, we must use the product rule, which is

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(f(x)*g(x))=f'(x)g(x)+f(x)g'(x)

Using the function from the problem statement, we get

\displaystyle f'=\frac{\mathrm{d} }{\mathrm{d} x}(5x)*(\cos(x))+\frac{\mathrm{d} }{\mathrm{d} x}(\cos(x))*5x

\displaystyle f'=5\cos(x)-5x\sin(x)

Example Question #251 : Computation Of The Derivative

Find the derivative of the following function:

\displaystyle f=\frac{4x^3+\sin(x)}{\tan(x)}

Possible Answers:

\displaystyle f'=\frac{\tan(x)(12x^2+\cos(x))-(4x^3+\sin(x))(\sec^2(x))}{\tan^2(x)}

\displaystyle f'=\frac{\tan(x)(12x^3+\cos(x))-(4x^3+\cos(x))(\sec^2(x))}{\tan^2(x)}

\displaystyle f'=\frac{\tan(x)(12x^2+\cos(x))+(4x^3+\sin(x))(\tan^2(x))}{\tan^2(x)}

\displaystyle f'=\frac{\tan(x)(12x^2+\cos(x))-(4x^3+\sin(x))(\sec^2(x))}{\sec^2(x)}

Correct answer:

\displaystyle f'=\frac{\tan(x)(12x^2+\cos(x))-(4x^3+\sin(x))(\sec^2(x))}{\tan^2(x)}

Explanation:

To find the derivative of the function, we use the quotient rule, which is

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(\frac{f}{g})=\frac{gf'-fg'}{g^2}, where \displaystyle f and \displaystyle g are any expression

Using the function from the problem statement, we get

\displaystyle f'=\frac{\tan(x)*\frac{\mathrm{d} }{\mathrm{d} x}(4x^3+\sin(x))-(4x^3+\sin(x))*\frac{\mathrm{d} }{\mathrm{d} x}(\tan(x))}{\tan^2(x)}

Taking the derivatives, we get

\displaystyle f'=\frac{\tan(x)(12x^2+\cos(x))-(4x^3+\sin(x))(\sec^2(x))}{\tan^2(x)}

Learning Tools by Varsity Tutors