All AP Calculus AB Resources
Example Questions
Example Question #2 : Mean Value Theorem
As a consequence of the Mean Value Theorem, there must be a value such that:
By the Mean Value Theorem (MVT), if a function is continuous and differentiable on , then there exists at least one value such that . , a polynomial, is continuous and differentiable everywhere; setting , it follows from the MVT that there is such that
Evaluating and :
The expression for is equal to
,
the correct choice.
Example Question #3 : Mean Value Theorem
is continuous and differentiable on .
The values of for five different values of are as follows:
Which of the following is a consequence of Rolle's Theorem?
None of the statements in the other choices follows from Rolle's Theorem.
There cannot be such that .
must have a zero on the interval ,
There must be such that .
cannot have a zero on the interval ,
There must be such that .
By Rolle's Theorem, if is continuous on and differentiable on , and , then there must be such that .
is given to be continuous. Also, if we set , we note that . This sets up the conditions for Rolle's Theorem to apply. As a consequence, there must be such that .
Incidentally, it does follow from the given information that must have a zero on the interval , but this is due to the Intermediate Value Theorem, not Rolle's Theorem.
Example Question #1 : Mean Value Theorem
Find the mean value of the function over the interval .
To find the mean value of a function over some interval , one mus use the formula: .
Plugging in
Simplifying
One must then use the inverse Sine function to find the value c:
Example Question #3 : Continunity As A Property Of Functions
If exists,
must be continuous at .
We cannot conclude any of the other answers.
must be continuous at all values.
exists.
exists and
We cannot conclude any of the other answers.
Unless we are explicitly told so, via graph, information, or otherwise, we cannot assume is continuous at unless , which is required for to be continuous at .
We cannot assume anything about the existence of , because we do not know what is, or its end behavior.
Example Question #4 : Continunity As A Property Of Functions
Which of the following is equal to ?
does not exist.
does not exist.
The limit of a function as approaches a value exists if and only if the limit from the left is equal to the limit from the right; the actual value of is irrelevant. Since the function is piecewise-defined, we can determine whether these limits are equal by finding the limits of the individual expressions. These are both polynomials, so the limits can be calculated using straightforward substitution:
does not exist, because .
Example Question #2 : Continunity As A Property Of Functions
Determine any points of discontinuity for the function:
For a function to be continuous the following criteria must be met:
- The function must exist at the point (no division by zero, asymptotic behavior, negative logs, or negative radicals).
- The limit must exist.
- The point must equal the limit. (Symbolically, ).
It is easiest to first find any points where the function is undefined. Since our function involves a fraction and a natural log, we must find all points in the domain such that the natural log is less than or equal to zero, or points where the denominator is equal to zero.
To find the values that cause the natural log to be negative we set
Therefore, those x values will yield our points of discontinuity. Normally, we would find values where the natural log is negative; however, for all the function is positive.
Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find the derivative of the function,
Differentiate both sides and proceed with the product rule:
(1)
Evaluate the derivatives in each term. For the first term,
(2)
apply the chain rule,
So now the first term in equation (2) can be written,
(3)
The second term in equation (2) is easy, this is just the product of multiplied by the derivative of ,
(4)
Combine equations (3) and (4) to write the derivative,
Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find the derivative.
Use the product rule to find the derivative.
Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find the derivative.
Use the power rule to find the derivative.
Thus, the derivative is
Example Question #3 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find given
Here we use the product rule:
Let and
Then (using the chain rule)
and (using the chain rule)
Subbing these values back into our equation gives us
Simplify by combining like-terms
and pulling out a from each term gives our final answer
Certified Tutor