All AP Calculus AB Resources
Example Questions
Example Question #454 : Derivatives
Find the derivative of the function:
*****************************************************************
REQUIRED KNOWLEDGE
*****************************************************************
*****************************************************************
SOLUTION STEPS
*****************************************************************
Given:
Set up as product rule:
Evaluate the derivative of tan^2(x) as another product rule, before continuing:
Plug this into the slot in the initial product, and carry on
Pulling out the common factor of tan(x), we arrive at our answer:
*****************************************************************
CORRECT ANSWER
*****************************************************************
Example Question #455 : Derivatives
Find the derivative of the function:
*****************************************************************
STEPS
*****************************************************************
Given:
Set the approach as a product rule application:
Factoring out the 9, we then arrive at the correct answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #456 : Derivatives
Find the derivative of the function:
*****************************************************************
STEPS
*****************************************************************
Given:
Identify the derivative as an application of the product rule
Continuing:
Combining like terms,
Rearranging the terms in descending degrees, we arrive at the correct answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #457 : Derivatives
Find the derivative of the function:
*****************************************************************
STEPS
*****************************************************************
Given:
Set the derivative up with the quotient rule:
Multiply factors:
Combine like terms:
Factoring out 8x in the numerator, we arrive at the correct answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #458 : Derivatives
Find the derivative of the function:
Simplify your final answer through factoring terms out
*****************************************************************
STEPS
*****************************************************************
Given:
Set up a product rule for the derivative of the second term:
Plug this new-found product in for ,
Multiply the negative across:
Factor out a common factor of s, and we reach the correct answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #459 : Derivatives
Find the derivative of the function:
*****************************************************************
STEPS
*****************************************************************
Given:
We can avoid the product rule by factoring the constants out before derivation:
Taking the derivative of the secant function, we arrive at the answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #81 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find the derivative of the function:
*****************************************************************
STEPS
*****************************************************************
Given:
Establish the derivative using the product rule:
Distribute y terms
Note and factor out the greatest common factor, y^3 to get the answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #82 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find the derivative of the function:
*****************************************************************
STEPS
*****************************************************************
Given:
We can circumvent having to use the product rule by factoring out the constants before deriving the functions, like so:
Now, we simply derive the trigonometric functions:
Multiplying the negatives, we arrive at the correct answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #83 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find the derivative of the function:
*****************************************************************
STEPS
*****************************************************************
Given:
Set up the product rule:
Factor out a greatest common factor -csc(y), and we reach the answer:
*****************************************************************
ANSWER
*****************************************************************
Example Question #84 : Derivative Rules For Sums, Products, And Quotients Of Functions
Find the derivative of the function:
Hint: Try to re-arrange the function first, and you can reach the answer faster and easier!
*****************************************************************
STEPS
*****************************************************************
Given:
With a little bit of re-arranging the problem, we can circumvent the quotient rule entirely
Substituting in tangent, we get
We can now derive
If we apply the general product rule, and remember to use the chain rule, we get:
We can find our chained term by deriving tangent:
Plug this result into our chain and we arrive at the correct answer:
*****************************************************************
ANSWER
*****************************************************************