AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #454 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                           REQUIRED KNOWLEDGE

*****************************************************************

*****************************************************************

                                                SOLUTION STEPS

*****************************************************************

Given: 

Set up as product rule:

Evaluate the derivative of tan^2(x) as another product rule, before continuing:

                      

                      

Plug this into the slot in the initial product, and carry on

Pulling out the common factor of tan(x), we arrive at our answer:

*****************************************************************

                                                CORRECT ANSWER

*****************************************************************

Example Question #455 : Derivatives

Find the derivative of the function:

 

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                    STEPS

*****************************************************************

Given:

Set the approach as a product rule application:

Factoring out the 9, we then arrive at the correct answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

Example Question #456 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                      STEPS

*****************************************************************

 Given:

Identify the derivative as an application of the product rule

Continuing:

 Combining like terms,

Rearranging the terms in descending degrees, we arrive at the correct answer:

*****************************************************************

                                                    ANSWER

*****************************************************************

Example Question #457 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

Set the derivative up with the quotient rule:

Multiply factors:

Combine like terms:

Factoring out 8x in the numerator, we arrive at the correct answer:

*****************************************************************

                                                   ANSWER

*****************************************************************

Example Question #458 : Derivatives

Find the derivative of the function:

Simplify your final answer through factoring terms out 

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

Set up a product rule for the derivative of the second term:

Plug this new-found product in for ,

Multiply the negative across:

 Factor out a common factor of s, and we reach the correct answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

Example Question #459 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                      STEPS

*****************************************************************

 Given:

We can avoid the product rule by factoring the constants out before derivation:

 

Taking the derivative of the secant function, we arrive at the answer: 

*****************************************************************

                                                   ANSWER

*****************************************************************

Example Question #81 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                   STEPS

*****************************************************************

 Given:

Establish the derivative using the product rule:

Distribute y terms 

Note and factor out the greatest common factor, y^3 to get the answer:

*****************************************************************

                                                 ANSWER

*****************************************************************

Example Question #82 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

We can circumvent having to use the product rule by factoring out the constants before deriving the functions, like so:

Now, we simply derive the trigonometric functions:

Multiplying the negatives, we arrive at the correct answer:

*****************************************************************

                                                   ANSWER

*****************************************************************

Example Question #83 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                    STEPS

*****************************************************************

 Given:

Set up the product rule:

Factor out a greatest common factor -csc(y), and we reach the answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

Example Question #84 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function:

 

Hint: Try to re-arrange the function first, and you can reach the answer faster and easier!

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

With a little bit of re-arranging the problem, we can circumvent the quotient rule entirely

Substituting in tangent, we get

We can now derive

If we apply the general product rule, and remember to use the chain rule, we get:

We can find our chained term by deriving tangent:

Plug this result into our chain and we arrive at the correct answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

 

Learning Tools by Varsity Tutors