SSAT Elementary Level Math : How to subtract

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Adding And Subtracting Within 20: Ccss.Math.Content.1.Oa.C.6

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 4\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 10\)

\(\displaystyle 9\)

\(\displaystyle 6\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 7\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 11\) and count back \(\displaystyle 4\).

\(\displaystyle 11, 10, 9, 8, 7\)

\(\displaystyle \frac{\begin{array}[b]{r}11\\ -\ 4\end{array}}{ \ \ \ \space 7}\)

Example Question #581 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 1\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 5\)

\(\displaystyle 8\)

\(\displaystyle 4\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 7\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 8\) and count back \(\displaystyle 1\).

\(\displaystyle 8, 7\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 1\end{array}}{ \ \ \ \space 7}\)

Example Question #32 : Adding And Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 5\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle 12\)

\(\displaystyle 14\)

\(\displaystyle 15\)

\(\displaystyle 16\)

Correct answer:

\(\displaystyle 14\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 19\) and count back \(\displaystyle 5\).

\(\displaystyle 19, 18, 17, 16, 15, 14\)

\(\displaystyle \frac{\begin{array}[b]{r}19\\ -\ 5\end{array}}{ \ \ \space 14}\)

Example Question #33 : Adding And Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}18\\ -\ 7\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 15\)

\(\displaystyle 11\)

\(\displaystyle 12\)

\(\displaystyle 14\)

\(\displaystyle 13\)

Correct answer:

\(\displaystyle 11\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 18\) and count back \(\displaystyle 7\).

\(\displaystyle 18, 17, 16, 15, 14, 13, 12, 11\)

\(\displaystyle \frac{\begin{array}[b]{r}18\\ -\ 7\end{array}}{ \ \ \space 11}\)

Example Question #11 : Adding And Subtracting Within 20: Ccss.Math.Content.1.Oa.C.6

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 7\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 10\)

\(\displaystyle 8\)

\(\displaystyle 6\)

\(\displaystyle 7\)

\(\displaystyle 9\)

Correct answer:

\(\displaystyle 10\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 17\) and count back \(\displaystyle 7\).

\(\displaystyle 17, 16, 15, 14, 13, 12, 11, 10\)

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 7\end{array}}{ \ \ \space 10}\)

Example Question #131 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 14\)

\(\displaystyle 13\)

\(\displaystyle 12\)

\(\displaystyle 16\)

\(\displaystyle 15\)

Correct answer:

\(\displaystyle 13\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 16\) and count back \(\displaystyle 3\).

\(\displaystyle 16,15,14,13\)

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 3\end{array}}{ \ \ \ \space 13}\)

Example Question #32 : Adding And Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 7\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 14\)

\(\displaystyle 13\)

\(\displaystyle 10\)

\(\displaystyle 11\)

\(\displaystyle 12\)

Correct answer:

\(\displaystyle 13\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 20\) and count back \(\displaystyle 7\).

\(\displaystyle 20, 19, 18, 17, 16, 15, 14, 13\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 7\end{array}}{ \ \ \space 13}\)

Example Question #131 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 17\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 4\)

\(\displaystyle 1\)

\(\displaystyle 3\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 17\) and count back \(\displaystyle 17\).

\(\displaystyle 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 17\end{array}}{ \ \ \ \space 0}\)

Example Question #41 : Adding And Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 9\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 6\)

\(\displaystyle 8\)

\(\displaystyle 4\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 8\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 17\) and count back \(\displaystyle 9\).

\(\displaystyle 17, 16, 15, 14, 13, 12, 11, 10, 9, 8\)

\(\displaystyle \frac{\begin{array}[b]{r}17\\ -\ 9\end{array}}{ \ \ \ \space 8}\)

Example Question #41 : Adding And Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 5\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle 12\)

\(\displaystyle 10\)

\(\displaystyle 11\)

\(\displaystyle 14\)

Correct answer:

\(\displaystyle 11\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 16\) and count back \(\displaystyle 5\).

\(\displaystyle 16, 15, 14, 13, 12, 11\)

\(\displaystyle \frac{\begin{array}[b]{r}16\\ -\ 5\end{array}}{ \ \ \space11}\)

Learning Tools by Varsity Tutors