SSAT Elementary Level Math : How to subtract

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #22 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 7\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 5\)

\(\displaystyle 6\)

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 10\) and count back \(\displaystyle 7\).

\(\displaystyle 10, 9, 8, 7, 6, 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}10\\ -\ 7\end{array}}{ \ \ \ \space 3}\)

Example Question #23 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 1\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 7\)

\(\displaystyle 9\)

\(\displaystyle 5\)

\(\displaystyle 6\)

\(\displaystyle 8\)

Correct answer:

\(\displaystyle 8\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 9\) and count back \(\displaystyle 1\).

\(\displaystyle 9, 8\)

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 1\end{array}}{ \ \ \ \space 8}\)

Example Question #541 : How To Subtract

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 1\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 10\)

\(\displaystyle 9\)

\(\displaystyle 6\)

Correct answer:

\(\displaystyle 8\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 9\) and count back \(\displaystyle 1\).

\(\displaystyle 9, 8\)

\(\displaystyle \frac{\begin{array}[b]{r}9\\ -\ 1\end{array}}{ \ \ \ \space 8}\)

Example Question #24 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 4\)

\(\displaystyle 8\)

\(\displaystyle 7\)

\(\displaystyle 6\)

\(\displaystyle 5\)

Correct answer:

\(\displaystyle 5\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 8\) and count back \(\displaystyle 3\).

\(\displaystyle 8, 7, 6, 5\)

\(\displaystyle \frac{\begin{array}[b]{r}8\\ -\ 3\end{array}}{ \ \ \ \space 5}\)

Example Question #25 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 3\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 3\)

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 4\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 7\) and count back \(\displaystyle 3\).

\(\displaystyle 7, 5, 4\)

\(\displaystyle \frac{\begin{array}[b]{r}7\\ -\ 3\end{array}}{ \ \ \ \space 4}\)

Example Question #26 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 6\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 3\)

\(\displaystyle 1\)

\(\displaystyle 0\)

\(\displaystyle 4\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 6\) and count back \(\displaystyle 6\).

\(\displaystyle 6, 5, 4, 3, 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}6\\ -\ 6\end{array}}{ \ \ \ \space 0}\)

Example Question #31 : Subtracting Within 20

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle 2\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 3\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 5\) and count back \(\displaystyle 2\).

\(\displaystyle 5, 4, 3\)

\(\displaystyle \frac{\begin{array}[b]{r}5\\ -\ 2\end{array}}{ \ \ \ \space 3}\)

Example Question #761 : Numbers And Operations

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 5\)

\(\displaystyle 2\)

\(\displaystyle 3\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 1\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 3\) and count back \(\displaystyle 2\).

\(\displaystyle 3, 2, 1\)

\(\displaystyle \frac{\begin{array}[b]{r}3\\ -\ 2\end{array}}{ \ \ \ \space 1}\)

Example Question #891 : Operations & Algebraic Thinking

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 1\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 2\)

\(\displaystyle 0\)

Correct answer:

\(\displaystyle 0\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 2\) and count back \(\displaystyle 2\).

\(\displaystyle 2, 1, 0\)

\(\displaystyle \frac{\begin{array}[b]{r}2\\ -\ 2\end{array}}{ \ \ \ \space 0}\)

Example Question #1465 : Common Core Math: Grade 1

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 18\end{array}}{ \ \ \ \space ?}\)

Possible Answers:

\(\displaystyle 0\)

\(\displaystyle 4\)

\(\displaystyle 3\)

\(\displaystyle 1\)

\(\displaystyle 2\)

Correct answer:

\(\displaystyle 2\)

Explanation:

To subtract we can count backwards. Start at \(\displaystyle 20\) and count back \(\displaystyle 18\).

\(\displaystyle 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2\)

\(\displaystyle \frac{\begin{array}[b]{r}20\\ -\ 18\end{array}}{ \ \ \ \ \ \space 2}\)

Learning Tools by Varsity Tutors