ISEE Lower Level Quantitative : Operations with fractions and whole numbers

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #261 : Number & Operations With Fractions

Solve:

\displaystyle \small \frac{4}{8}\times\frac{1}{3}

Possible Answers:

\displaystyle \small \frac{2}3{}

\displaystyle \small \frac{1}{3}

\displaystyle \small \frac{1}{6}

\displaystyle \small \frac{5}{6}

\displaystyle \small \frac{6}{7}

Correct answer:

\displaystyle \small \frac{1}{6}

Explanation:

When we multiply fractions, we multiply the numerator by the numerator and the denominator by the denominator. 

\displaystyle \small \small \frac{4}{8}\times\frac{1}{3}=\frac{4}{24}

\displaystyle \small \frac{4}{24} can be reduced by dividing both sides by \displaystyle \small 4

\displaystyle \small \frac{4}{24}\div\frac{4}{4}=\frac{1}{6}

Example Question #253 : Fractions

Solve:

\displaystyle \small \frac{4}{8}\times\frac{3}{4}

Possible Answers:

\displaystyle \small \frac{2}{3}

\displaystyle \small \frac{1}{4}

\displaystyle \small \frac{1}{2}

\displaystyle \small \frac{7}{9}

\displaystyle \small \frac{3}{8}

Correct answer:

\displaystyle \small \frac{3}{8}

Explanation:

When we multiply fractions, we multiply the numerator by the numerator and the denominator by the denominator. 

\displaystyle \small \small \frac{4}{8}\times\frac{3}{4}=\frac{12}{32}

\displaystyle \small \frac{12}{32} can be reduced by dividing both sides by \displaystyle \small 4

\displaystyle \small \frac{12}{32}\div\frac{4}{4}=\frac{3}{8}

Example Question #1893 : Numbers And Operations

Solve:

\displaystyle \small \frac{7}{8}\times\frac{1}{3}

Possible Answers:

\displaystyle \small \frac{9}{11}

\displaystyle \small \frac{7}{24}

\displaystyle \small \frac{5}{27}

\displaystyle \small \frac{4}{5}

\displaystyle \small \frac{7}{21}

Correct answer:

\displaystyle \small \frac{7}{24}

Explanation:

When we multiply fractions, we multiply the numerator by the numerator and the denominator by the denominator. 

\displaystyle \small \small \frac{7}{8}\times\frac{1}{3}=\frac{7}{24}

Example Question #1291 : Numbers And Operations

Solve:

\displaystyle \small \frac{1}{5}\times\frac{1}{8}

Possible Answers:

\displaystyle \small \frac{1}{40}

\displaystyle \small \frac{5}{6}

\displaystyle \small \frac{1}{20}

\displaystyle \small \frac{2}{40}

\displaystyle \small \frac{1}{12}

Correct answer:

\displaystyle \small \frac{1}{40}

Explanation:

When we multiply fractions, we multiply the numerator by the numerator and the denominator by the denominator. 

\displaystyle \small \small \frac{1}{5}\times\frac{1}{8}=\frac{1}{40}

Example Question #32 : Multiply A Fraction Or Whole Number By A Fraction: Ccss.Math.Content.5.Nf.B.4

Solve the following:

\displaystyle \small \frac{1}{3}\times\frac{1}{9}

Possible Answers:

\displaystyle \small \frac{1}{28}

\displaystyle \small \frac{1}{27}

\displaystyle \small \frac{2}{27}

\displaystyle \small \frac{5}{27}

\displaystyle \small \frac{1}{6}

Correct answer:

\displaystyle \small \frac{1}{27}

Explanation:

When we multiply fractions, we multiply the numerator by the numerator and the denominator by the denominator. 

\displaystyle \small \small \frac{1}{3}\times\frac{1}{9}=\frac{1}{27}

Example Question #33 : Multiply A Fraction Or Whole Number By A Fraction: Ccss.Math.Content.5.Nf.B.4

Solve:

\displaystyle \small \frac{2}{5}\times\frac{1}{7}

Possible Answers:

\displaystyle \small \frac{7}{8}

\displaystyle \small \frac{1}{15}

\displaystyle \small \frac{2}{7}

\displaystyle \small \frac{2}{35}

\displaystyle \small \frac{1}{5}

Correct answer:

\displaystyle \small \frac{2}{35}

Explanation:

When we multiply fractions, we multiply the numerator by the numerator and the denominator by the denominator. 

\displaystyle \small \small \frac{2}{5}\times\frac{1}{7}=\frac{2}{35}

Example Question #31 : Operations With Fractions And Whole Numbers

Jessica made \displaystyle 2 gallons of punch. \displaystyle \frac{1}{5} of the punch was water. How many gallons of water did she use to make the punch? 

Possible Answers:

\displaystyle 2

\displaystyle \frac{2}{5}

\displaystyle \frac{4}{5}

\displaystyle 1

\displaystyle \frac{3}{5}

Correct answer:

\displaystyle \frac{2}{5}

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of". \displaystyle \frac{1}{5} of the punch is water. 

We know that we have \displaystyle 2 gallons of punch so we can set up our multiplication problem.

\displaystyle \frac{1}{5}\times2 

2 5 

 \displaystyle \frac{1}{5}\times2 which means \displaystyle \frac{1}{5} of each group of \displaystyle 2=\frac{2}{5}

Example Question #1 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Ronda made \displaystyle 3 gallons of punch. \displaystyle \frac{1}{5} of the punch was water. How much water did she use to make the punch? 

 

Possible Answers:

\displaystyle \frac{2}{5}

\displaystyle \frac{1}{5}

\displaystyle 1

\displaystyle \frac{3}{5}

\displaystyle 3

Correct answer:

\displaystyle \frac{3}{5}

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of". \displaystyle \frac{1}{5} of the punch is water. 

We know that we have \displaystyle 3 gallons of punch so we can set up our multiplication problem.

\displaystyle \frac{1}{5}\times3 

3 5 

 \displaystyle \frac{1}{5}\times3 which means \displaystyle \frac{1}{5} of each group of \displaystyle 3=\frac{3}{5}

Example Question #2 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Mary-Beth made \displaystyle 4 gallons of punch. \displaystyle \frac{1}{5} of the punch was water. How much water did she use to make the punch? 

 

Possible Answers:

\displaystyle \frac{3}{5}

\displaystyle \frac{4}{5}

\displaystyle 4

\displaystyle \frac{2}{5}

\displaystyle 2

Correct answer:

\displaystyle \frac{4}{5}

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of". \displaystyle \frac{1}{5} of the punch is water. 

We know that we have \displaystyle 4 gallons of punch so we can set up our multiplication problem.

\displaystyle \frac{1}{5}\times4 

 4 5

 \displaystyle \frac{1}{5}\times4 which means \displaystyle \frac{1}{5} of each group of \displaystyle 4=\frac{4}{5}

Example Question #1 : Interpret The Product (A/B) × Q As A Part Of A Partition Of Q Into B Equal Parts: Ccss.Math.Content.5.Nf.B.4a

Alison made \displaystyle 2 gallons of punch. \displaystyle \frac{1}{3} of the punch was water. How much water did she use to make the punch? 

Possible Answers:

\displaystyle \frac{1}{3}

\displaystyle \frac{2}{3}

\displaystyle \frac{3}{3}

\displaystyle 2

\displaystyle 3

Correct answer:

\displaystyle \frac{2}{3}

Explanation:

A keyword in our question that gives us a clue that we are going to multiply to solve this problem is the word "of". \displaystyle \frac{1}{3} of the punch is water. 

We know that we have \displaystyle 2 gallons of punch so we can set up our multiplication problem.

\displaystyle \frac{1}{3}\times2 

2 3 

 \displaystyle \frac{1}{3}\times2 which means \displaystyle \frac{1}{3} of each group of \displaystyle 2=\frac{2}{3}

Learning Tools by Varsity Tutors