AP Physics 1 : Newtonian Mechanics

Study concepts, example questions & explanations for AP Physics 1

varsity tutors app store varsity tutors android store

Example Questions

Example Question #9 : Period And Frequency Of Harmonic Motion

The Fourier Transform is an extensively used mathematical analysis technique. In some applications, it reconstructs a function \displaystyle f(x) into an infinite series of sine waves. 

Given that the Fourier Transform is given by the series: 

\displaystyle \sum_{n=1}^{\infty } c_n*sin(\frac{n \pi x}{l}) 

Where \displaystyle l is an arbitrary length and \displaystyle n is an integer, what is the wavelength of the sinusoid when \displaystyle n=3

Possible Answers:

\displaystyle \frac{2}{3l}

\displaystyle \frac{2l}{3\pi}

\displaystyle \frac{2l}{3}

\displaystyle \frac{2 \pi l}{3}

Correct answer:

\displaystyle \frac{2l}{3}

Explanation:

First, we want to ignore the summation sign and the \displaystyle c_n since those terms do not affect the wavelength at \displaystyle n=3. All we need to look at is the sine term. 

For \displaystyle n=3, we get the sinusoid:

\displaystyle sin(\frac{3 \pi x}{l}) 

Remember that wavelength \displaystyle \lambda is given by 

\displaystyle \lambda = \frac{2 \pi}{\frac{3\pi}{l}}= \frac{2l}{3}

Example Question #1091 : Newtonian Mechanics

Determine the period of a sine wave that has a frequency of \displaystyle 2Hz.

Possible Answers:

\displaystyle 2s

\displaystyle 1s

\displaystyle \frac{1}{2}s

\displaystyle 4s

Correct answer:

\displaystyle \frac{1}{2}s

Explanation:

Period is given by: \displaystyle \frac{1}{f} where \displaystyle f is frequency. Therefore,

\displaystyle period=\frac{1}{2Hz}=\frac{1}{2}s

Example Question #1091 : Newtonian Mechanics

A horizontal spring with a constant \displaystyle k = 250\ \frac{\textup{N}}{\textup{m}} is on a frictionless surface. If the mass is doubled, by what factor is the frequency of the spring changed? Assume simple harmonic motion.

Possible Answers:

\displaystyle 1

\displaystyle 2

\displaystyle \frac{1}{2}

\displaystyle \sqrt\frac{1}{2}

\displaystyle \sqrt{2}

Correct answer:

\displaystyle \sqrt\frac{1}{2}

Explanation:

The expression for the frequency of a spring:

\displaystyle f = \frac{w}{2\pi}

Therefore, we can say:

\displaystyle \frac{f_1}{f_2}=\frac{\left ( \frac{w_1}{2\pi}\right )}{\left ( \frac{w_2}{2\pi}\right )}

\displaystyle \frac{f_1}{f_2}=\frac{w_1}{w_2}

Where:

\displaystyle w = \sqrt{\frac{k}{m}}

Substituting this into our expression, we get:

\displaystyle \frac{f_1}{f_2}=\frac{\sqrt{\frac{k}{m_1}}}{\sqrt{\frac{k}{m_2}}}

\displaystyle \frac{f_1}{f_2}= \sqrt{\frac{m_2}{m_1}}

Taking the inverse of both sides:

\displaystyle \frac{f_2}{f_1}= \sqrt{\frac{m_1}{m_2}}

Rearranging for final frequency:

\displaystyle f_2= f_1\sqrt{\frac{m_1}{m_2}}

From the problem statement, we know that:

\displaystyle m_2 = 2m_1

substituting this into the expression, we get:

\displaystyle f_2 = f_1\sqrt{\frac{m_1}{2m_2}} = f_1\sqrt{\frac{1}{2}}

Therefore, the frequency was changed by a factor of \displaystyle \sqrt{\frac{1}{2}}

Example Question #1092 : Newtonian Mechanics

A simple pendulum has a block of mass \displaystyle m = 50\textup{ kg} attached to one end and is rotating in simple harmonic motion. If the frequency of the pendulum is \displaystyle 0.4\textup{ Hz}, what is the length of the pendulum?

\displaystyle g = 10\ \frac{\textup{m}}{\textup{s}^2}

Possible Answers:

\displaystyle 3.8\textup{ m}

\displaystyle 9.1\textup{ m}

\displaystyle 5.2\textup{ m}

\displaystyle 1.6\textup{ m}

\displaystyle 7.9\textup{ m}

Correct answer:

\displaystyle 1.6\textup{ m}

Explanation:

We only need one expression to solve this problem:

\displaystyle f = \frac{1}{2\pi}\sqrt{\frac{g}{L}}

Now we just need to rearrange for the length of the pendulum:

\displaystyle 2\pi f = \sqrt{\frac{g}{L}}

\displaystyle \frac{g}{L} = (2\pi f)^2

\displaystyle L = \frac{g}{(2\pi f)^2}

We have values for each of these variables, so time to plug and chug:

\displaystyle L = \frac{\left ( 10\frac{m}{s^2}\right )}{\left ( 2\pi 0.4\frac{1}{s}\right )^2}

\displaystyle L = 1.6m

Example Question #11 : Period And Frequency Of Harmonic Motion

If the length of a simple pendulum is halved and the pendulum is moved to the moon where \displaystyle g_{moon}=1.6\ \frac{\textup{m}}{\textup{s}^2}, by what factor does the period of the pendulum change when this is done?

\displaystyle g_{earth}=10\ \frac{\textup{m}}{\textup{s}^2}

Possible Answers:

\displaystyle 0.28

\displaystyle 0.57

\displaystyle 1.8

\displaystyle 3.5

\displaystyle 1.0

Correct answer:

\displaystyle 3.5

Explanation:

Since we are told that this is a simple pendulum, we can use the follow expression for period:

\displaystyle T_1=2\pi \sqrt{\frac{L_1}{g_1}}

\displaystyle T_2=2\pi \sqrt{\frac{L_2}{g_2}}

Now let's divide scenario 2 by scenario 1:

\displaystyle \frac{T_2}{T_1}= \sqrt{\frac{L_2g_1}{L_1g_2}}

From the problem statement, we know that:

\displaystyle L_2 = 2L_1

So let's plug that in:

\displaystyle \frac{T_2}{T_1}= \sqrt{\frac{2L_1g_1}{L_1g_2}} = \sqrt{\frac{2g_1}{g_2}}

Then plugging in our values for g:

\displaystyle \frac{T_2}{T_1} = \sqrt{\frac{2\left ( 10\frac{m}{s^2}\right )}{\left ( 1.6\frac{m}{s^2}\right )}}

\displaystyle \frac{T_2}{T_1} = 3.5

Example Question #61 : Harmonic Motion

As on object passes through its equilibrium position during simple harmonic motion, which statements are true regarding its potential (U) and kinetic (K) energies?

Possible Answers:

min U, min K

max U, min K

None of these

max U, max K

min U, max K

Correct answer:

min U, max K

Explanation:

An object has the maximum potential energy the furthest from its equilibrium point (at the turnaround point). So it at the equilibrium position it would have the minimum potential energy. If it is undergoing simple harmonic motion, it would have the maximum kinetic energy as it passes through the equilibrium position because it is returning from the stretched position (spring example) where it gathered energy. The same is true for other objects undergoing this motion.

Example Question #1092 : Newtonian Mechanics

Find the mass of the bob of a simple pendulum if the period of the pendulum is \displaystyle 5 seconds, and the length of the pendulum is \displaystyle 5m.

Possible Answers:

\displaystyle 3.17kg

\displaystyle 7.90kg

Impossible to determine

\displaystyle 5kg

\displaystyle 5.07*10^{-3}kg

Correct answer:

Impossible to determine

Explanation:

It's impossible because the period of a simple pendulum doesn't depend on the mass of the bob. Because of this, we have no way to determine the mass from the period.

Example Question #62 : Harmonic Motion

The position of a \displaystyle 1kg mass in an oscillating spring-mass system is given by the following equation:

\displaystyle x(t)=2sin(4\pi t)+4, where \displaystyle t is measured in \displaystyle seconds, and \displaystyle x is measured in \displaystyle meters.

What is the frequency of the system?

Possible Answers:

\displaystyle 2 Hz

\displaystyle \frac{1}{4}Hz

\displaystyle 8Hz

\displaystyle \frac{1}{2}Hz

\displaystyle 4Hz

Correct answer:

\displaystyle 2 Hz

Explanation:

In these types of problems, it is always advantageous to recognize the format of the equation. In trigonometric functions, the period is always given by \displaystyle \frac{2\pi}{B}, when the function is written as \displaystyle Asin(Bt+C)+D. Since frequency is the reciprocal of the period, we will need to flip the fraction.

\displaystyle B=4\pi

\displaystyle P=\frac{2\pi}{B}=\frac{2\pi}{4\pi}=\frac{1}{2}

\displaystyle Frequency=\frac{1}{P}=\frac{1}{\frac{1}{2}}=2Hz

Example Question #1097 : Newtonian Mechanics

The position of a \displaystyle 1kg mass in an oscillating spring-mass system is given by the following equation:

\displaystyle x(t)=2sin(4\pi t)+4, where \displaystyle t is measured in \displaystyle seconds, and \displaystyle x is measured in \displaystyle meters.

What is the period of the oscillations?

Possible Answers:

\displaystyle \frac{1}{4}s

\displaystyle 4s

\displaystyle 2s

\displaystyle 1s

\displaystyle \frac{1}{2}s

Correct answer:

\displaystyle \frac{1}{2}s

Explanation:

In trigonometric functions, the period is always given by \displaystyle \frac{2\pi}{B}, when the function is written as \displaystyle Asin(Bt+C)+D. Once, we determine our \displaystyle B value, we are halfway to the solution!

\displaystyle B=4\pi

\displaystyle P=\frac{2\pi}{B}=\frac{2\pi}{4\pi}=\frac{1}{2}s

Example Question #1098 : Newtonian Mechanics

A horizontal spring is oscillating with a mass sliding on a perfectly frictionless surface. If the amplitude of the oscillation is \displaystyle 5cm and the mass has a value of \displaystyle 50g and a velocity at the rest length of \displaystyle 2\frac{m}{s}, determine the frequency of oscillation. 

Possible Answers:

None of these

\displaystyle \frac{80 rad}{s}

\displaystyle \frac{40 rad}{s}

\displaystyle \frac{710 rad}{s}

\displaystyle \frac{395 rad}{s}

Correct answer:

\displaystyle \frac{40 rad}{s}

Explanation:

Using conservation of energy:

\displaystyle KE_1+EPE_1=KE_2+EPE_2

\displaystyle .5mv_1^2+.5kx_1^2=.5mv_2^2+.5kx^2

Plugging in values:

\displaystyle .5*.050*2^2+.5k(0)^2=.5*.050(0)^2+.5k*.05^2

Solving for \displaystyle k

\displaystyle k=\frac{80N}{m}

\displaystyle \omega=\sqrt{\frac{k}{m}}

Plugging in values:

\displaystyle \omega=\frac{40 rad}{s}

Learning Tools by Varsity Tutors