AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1101 : Ap Calculus Ab

\(\displaystyle \begin{align*}&\text{Approximate }\int_{2}^{27}f(x)\\&\text{Using the trapezoidal rule, if }f(x)\text{ has the values:}\\&f(2)=-8\\&f(4)=-13\\&f(14)=-7\\&f(16)=-12\\&f(22)=17\end{align*}\)

Possible Answers:

\(\displaystyle -767.2991\)

\(\displaystyle -30.692\)

\(\displaystyle -171.875\)

\(\displaystyle -125\)

Correct answer:

\(\displaystyle -125\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(2)=-8\\&f(4)=-13\\&f(14)=-7\\&f(16)=-12\\&f(22)=17\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }2,10,2,6\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{2}^{27}f(x)\approx(2)\frac{-8+(-13)}{2}+(10)\frac{-13+(-7)}{2}+(2)\frac{-7+(-12)}{2}+(6)\frac{-12+(17)}{2}\\&\int_{2}^{27}f(x)\approx-125\end{align*}\)

Example Question #292 : Integrals

\(\displaystyle \begin{align*}&\text{The function }f(x)\text{ has the following values on the interval }x=[-4,8]:\\&f(-4)=20\\&f(0)=13\\&f(2)=-1\\&f(8)=16\\&\text{Approximate the integral of }f(x)\text{ on this interval using the trapezoidal rule.}\end{align*}\)

Possible Answers:

\(\displaystyle 360\)

\(\displaystyle 120\)

\(\displaystyle 30\)

\(\displaystyle 123\)

Correct answer:

\(\displaystyle 123\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(-4)=20\\&f(0)=13\\&f(2)=-1\\&f(8)=16\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }4,2,6\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{-4}^{8}f(x)\approx(4)\frac{20+(13)}{2}+(2)\frac{13+(-1)}{2}+(6)\frac{-1+(16)}{2}\\&\int_{-4}^{8}f(x)\approx123\end{align*}\)

Example Question #293 : Integrals

\(\displaystyle \begin{align*}&f(-9)=9\\&f(1)=6\\&f(9)=14\\&f(13)=-4\\&f(23)=10\\&\text{Approximate, using a trapezoidal sum, }\int_{-9}^{23}f(x)\end{align*}\)

Possible Answers:

\(\displaystyle 816\)

\(\displaystyle 204\)

\(\displaystyle 205\)

\(\displaystyle 25.5\)

Correct answer:

\(\displaystyle 205\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(-9)=9\\&f(1)=6\\&f(9)=14\\&f(13)=-4\\&f(23)=10\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }10,8,4,10\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{-9}^{23}f(x)\approx(10)\frac{9+(6)}{2}+(8)\frac{6+(14)}{2}+(4)\frac{14+(-4)}{2}+(10)\frac{-4+(10)}{2}\\&\int_{-9}^{23}f(x)\approx205\end{align*}\)

Example Question #31 : Trapezoidal Sums

\(\displaystyle \begin{align*}&\text{Approximate }\int_{-5}^{17}f(x)\\&\text{Using the trapezoidal rule, if }f(x)\text{ has the values:}\\&f(-5)=5\\&f(1)=-6\\&f(11)=11\\&f(17)=-4\end{align*}\)

Possible Answers:

\(\displaystyle 43\)

\(\displaystyle 40.3333\)

\(\displaystyle 121\)

\(\displaystyle 5.5\)

Correct answer:

\(\displaystyle 43\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(-5)=5\\&f(1)=-6\\&f(11)=11\\&f(17)=-4\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }6,10,6\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{-5}^{17}f(x)\approx(6)\frac{5+(-6)}{2}+(10)\frac{-6+(11)}{2}+(6)\frac{11+(-4)}{2}\\&\int_{-5}^{17}f(x)\approx43\end{align*}\)

Example Question #32 : Trapezoidal Sums

\(\displaystyle \begin{align*}&\text{The function }f(x)\text{ has the following values on the interval }x=[1,32]:\\&f(1)=15\\&f(3)=-9\\&f(7)=9\\&f(13)=-15\\&f(17)=14\\&\text{Approximate the integral of }f(x)\text{ on this interval using the trapezoidal rule.}\end{align*}\)

Possible Answers:

\(\displaystyle -3.875\)

\(\displaystyle -0.74519\)

\(\displaystyle -23.101\)

\(\displaystyle -14\)

Correct answer:

\(\displaystyle -14\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(1)=15\\&f(3)=-9\\&f(7)=9\\&f(13)=-15\\&f(17)=14\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }2,4,6,4\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{1}^{32}f(x)\approx(2)\frac{15+(-9)}{2}+(4)\frac{-9+(9)}{2}+(6)\frac{9+(-15)}{2}+(4)\frac{-15+(14)}{2}\\&\int_{1}^{32}f(x)\approx-14\end{align*}\)

Example Question #301 : Integrals

\(\displaystyle \begin{align*}&f(-5)=-2\\&f(-1)=19\\&f(9)=-19\\&f(15)=19\\&f(25)=-13\\&\text{Approximate, using a trapezoidal sum, }\int_{-5}^{25}f(x)\end{align*}\)

Possible Answers:

\(\displaystyle 86.25\)

\(\displaystyle 345\)

\(\displaystyle 64\)

\(\displaystyle 11.5\)

Correct answer:

\(\displaystyle 64\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(-5)=-2\\&f(-1)=19\\&f(9)=-19\\&f(15)=19\\&f(25)=-13\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }4,10,6,10\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{-5}^{25}f(x)\approx(4)\frac{-2+(19)}{2}+(10)\frac{19+(-19)}{2}+(6)\frac{-19+(19)}{2}+(10)\frac{19+(-13)}{2}\\&\int_{-5}^{25}f(x)\approx64\end{align*}\)

Example Question #1107 : Ap Calculus Ab

\(\displaystyle \begin{align*}&\text{The function }f(x)\text{ has the following values on the interval }x=[-10,20]:\\&f(-10)=-17\\&f(-2)=19\\&f(2)=6\\&f(10)=-11\\&f(20)=-4\\&\text{Approximate the integral of }f(x)\text{ on this interval using the trapezoidal rule.}\end{align*}\)

Possible Answers:

\(\displaystyle -37\)

\(\displaystyle 3.5\)

\(\displaystyle 26.25\)

\(\displaystyle 105\)

Correct answer:

\(\displaystyle -37\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(-10)=-17\\&f(-2)=19\\&f(2)=6\\&f(10)=-11\\&f(20)=-4\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }8,4,8,10\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{-10}^{20}f(x)\approx(8)\frac{-17+(19)}{2}+(4)\frac{19+(6)}{2}+(8)\frac{6+(-11)}{2}+(10)\frac{-11+(-4)}{2}\\&\int_{-10}^{20}f(x)\approx-37\end{align*}\)

Example Question #1108 : Ap Calculus Ab

\(\displaystyle \begin{align*}&\text{Approximate }\int_{4}^{11}f(x)\\&\text{Using the trapezoidal rule, if }f(x)\text{ has the values:}\\&f(4)=-17\\&f(6)=18\\&f(10)=-4\\&f(11)=-19\end{align*}\)

Possible Answers:

\(\displaystyle -28\)

\(\displaystyle -9.3333\)

\(\displaystyle 17.5\)

\(\displaystyle -4\)

Correct answer:

\(\displaystyle 17.5\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(4)=-17\\&f(6)=18\\&f(10)=-4\\&f(11)=-19\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }2,4,1\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{4}^{11}f(x)\approx(2)\frac{-17+(18)}{2}+(4)\frac{18+(-4)}{2}+(1)\frac{-4+(-19)}{2}\\&\int_{4}^{11}f(x)\approx17.5\end{align*}\)

Example Question #1109 : Ap Calculus Ab

\(\displaystyle \begin{align*}&\text{The function }f(x)\text{ has the following values on the interval }x=[2,22]:\\&f(2)=7\\&f(5)=-15\\&f(7)=-20\\&f(11)=2\\&\text{Approximate the integral of }f(x)\text{ on this interval using the trapezoidal rule.}\end{align*}\)

Possible Answers:

\(\displaystyle -83\)

\(\displaystyle -203.3333\)

\(\displaystyle -1129.6296\)

\(\displaystyle -56.4815\)

Correct answer:

\(\displaystyle -83\)

Explanation:

\(\displaystyle \begin{align*}&\text{A trapezoidal integral approximation over an interval [a, b]}\\&\text{with n subintervals follows the form:}\\&\int_a^b f(x)dx \approx\sum_{i=1}^{n}\frac{b-a}{n}\frac{f(x_{i+1})+f(x_i)}{2}=\frac{b-a}{2n}(f(x_1)+2f(x_2)+2f(x_3)+...+f(x_n))\\&\text{It is essentially a sum of n trapezoids, each with a base of}\\&\text{length :}\frac{b-a}{n}\text{ and variable paired heights :}f(x_i),f(x_{i+1})\text{, which depend on the function values at }x_i,x_{i+1}\\&\text{We're given a set of values:}\\&f(2)=7\\&f(5)=-15\\&f(7)=-20\\&f(11)=2\\&\text{Notice that the points are not equidistant, with varying interval lengths between}\\&\text{These lengths in sequence are: }3,2,4\\&\text{This means we should calculate each trapezoid separately: }\sum_{i=1}^{n}(x_{i+1}-x_i)\frac{f(x_{i+1})+f(x_i)}{2}\\&\int_{2}^{22}f(x)\approx(3)\frac{7+(-15)}{2}+(2)\frac{-15+(-20)}{2}+(4)\frac{-20+(2)}{2}\\&\int_{2}^{22}f(x)\approx-83\end{align*}\)

Example Question #1101 : Ap Calculus Ab

Use the trapezoidal rule to approximate the following integral:

\(\displaystyle \int_{0}^{3}(\frac{x^2}{3}+xe^x)dx\)

Possible Answers:

\(\displaystyle \frac{9-9e^3}{2}\)

\(\displaystyle \frac{3+3e^3}{2}\)

\(\displaystyle \frac{9+9e^3}{2}\)

\(\displaystyle {9+9e^3}\)

Correct answer:

\(\displaystyle \frac{9+9e^3}{2}\)

Explanation:

The trapezoidal rule for approximating a definite integral is given by

\(\displaystyle \int_{a}^{b}f(x)dx\approx (b-a)(\frac{f(a)+f(b)}{2})\)

Using the above formula to approximate our integral, we get

\(\displaystyle \int_{0}^{3}(\frac{x^2}{3}+xe^x)dx \approx (3-0)(\frac{3+3e^3}{2})=\frac{9+9e^3}{2}\)

Learning Tools by Varsity Tutors