Algebra II : Solving Equations

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #271 : Solving Equations

Solve the equation:  \displaystyle 9(2-3x)=-(9-3x)

Possible Answers:

\displaystyle \frac{3}{10}

\displaystyle -\frac{9}{8}

\displaystyle \frac{9}{10}

\displaystyle -\frac{3}{10}

\displaystyle \frac{3}{8}

Correct answer:

\displaystyle \frac{9}{10}

Explanation:

Distribute the nine on the left side through both terms of the binomial.

\displaystyle 9(2-3x) = 18-27x

Evaluate the right side of the equation.

\displaystyle -(9-3x) = -9+3x = 3x-9

Set the two simplified terms equal.

\displaystyle 18-27x=3x-9

Add \displaystyle 27x on both sides.

\displaystyle 18-27x+27x=3x-9+27x

\displaystyle 18=30x-9

Add 9 on both sides.

\displaystyle 18+9=30x-9+9

\displaystyle 27=30x

Divide by thirty on both sides.

\displaystyle \frac{27}{30}=\frac{30x}{30}

Reduce both fractions.

The answer is:  \displaystyle \frac{9}{10}

Example Question #272 : Solving Equations

Set up the equation:  \displaystyle -8x+18=46

Possible Answers:

\displaystyle -8

\displaystyle -\frac{7}{9}

\displaystyle -\frac{1}{8}

\displaystyle -\frac{29}{4}

\displaystyle -\frac{7}{2}

Correct answer:

\displaystyle -\frac{7}{2}

Explanation:

Subtract 18 from both sides.

\displaystyle -8x+18-18=46-18

Simplify the equation.

\displaystyle -8x = 28

Divide by negative eight on both sides.

\displaystyle \frac{-8x }{-8}= \frac{28}{-8}

Reduce both fractions.

The answer is:  \displaystyle -\frac{7}{2}

Example Question #273 : Solving Equations

Solve the equation:  \displaystyle 6-9x=-2(4-7x)

Possible Answers:

\displaystyle -\frac{2}{23}

\displaystyle \frac{12}{41}

\displaystyle \frac{14}{23}

\displaystyle \frac{7}{46}

\displaystyle \frac{14}{9}

Correct answer:

\displaystyle \frac{14}{23}

Explanation:

Distribute the negative two on the right side.

The equation becomes:

\displaystyle 6-9x= -8+14x

Add \displaystyle 9x on both sides.

\displaystyle 6-9x+9x= -8+14x+9x

\displaystyle 6=23x-8

Add 8 on both sides.

\displaystyle 6+8=23x-8+8

\displaystyle 14= 23x

Divide by 23 on both sides.

\displaystyle \frac{14}{23}=\frac{ 23x}{23}

The answer is:  \displaystyle \frac{14}{23}

Example Question #274 : Solving Equations

Solve the equation:  \displaystyle -8(3x+5)=-14+2x

Possible Answers:

\displaystyle -\frac{27}{13}

\displaystyle \frac{27}{13}

\displaystyle \frac{1}{7}

\displaystyle \frac{13}{11}

\displaystyle -1

Correct answer:

\displaystyle -1

Explanation:

Distribute the negative eight through the binomial.

\displaystyle -8(3x)+(-8)(5)=-14+2x

Simplify the left side.

\displaystyle -24x-40 = -14+2x

Add \displaystyle 24x on both sides.

\displaystyle -24x-40+24x = -14+2x+24x

Simplify both sides.

\displaystyle -40 =-14+26x

Add 14 on both sides.

\displaystyle -40 +14=-14+26x+14

Simplify both sides.

\displaystyle -26=26x

Divide by 26 on both sides

\displaystyle \frac{-26}{26}=\frac{26x}{26}

The answer is:  \displaystyle -1

Example Question #271 : Solving Equations

Solve the equation:  \displaystyle -8(2x-3) = \frac{1}{5}

Possible Answers:

\displaystyle \frac{121}{80}

\displaystyle -\frac{29}{16}

\displaystyle \frac{29}{16}

\displaystyle -\frac{121}{80}

\displaystyle \frac{119}{80}

Correct answer:

\displaystyle \frac{119}{80}

Explanation:

Multiply the negative eight through both terms of the binomial.

\displaystyle -8(2x)-(-8)(3) = \frac{1}{5}

Simplify the equation.

\displaystyle -16x+24 = \frac{1}{5}

Multiply by five on both sides to eliminate the fraction on the right side.

\displaystyle 5(-16x+24 )= \frac{1}{5} \cdot 5

\displaystyle -80x+120 = 1

Subtract 120 on both sides.

\displaystyle -80x=-119

Divide by negative 80 on both sides.  The double negatives will negate.

The answer is: \displaystyle \frac{119}{80}

Example Question #751 : Basic Single Variable Algebra

Solve the equation:  \displaystyle 8x-34 = -13

Possible Answers:

\displaystyle \frac{47}{8}

\displaystyle -\frac{21}{8}

\displaystyle -\frac{47}{8}

\displaystyle \frac{21}{8}

Correct answer:

\displaystyle \frac{21}{8}

Explanation:

Add 34 on both sides of the equation.

\displaystyle 8x-34 +34= -13+34

The equation becomes:

\displaystyle 8x=21

Divide by eight on both sides.

\displaystyle \frac{8x}{8}=\frac{21}{8}

The answer is:  \displaystyle \frac{21}{8}

Example Question #752 : Basic Single Variable Algebra

Solve the equation:  \displaystyle 5x-7 = 35-4x

Possible Answers:

\displaystyle \frac{14}{3}

\displaystyle \frac{28}{3}

\displaystyle \frac{52}{9}

\displaystyle 28

\displaystyle 42

Correct answer:

\displaystyle \frac{14}{3}

Explanation:

Add \displaystyle 4x on both sides.

\displaystyle 5x-7+4x = 35-4x+4x

Combine like terms.  The equation will become:  

\displaystyle 9x-7 = 35

Add seven on both sides.

\displaystyle 9x-7+7 = 35+7

\displaystyle 9x=42

Divide by nine on both sides.

\displaystyle \frac{9x}{9}=\frac{42}{9}

Reduce the fraction.

The answer is:  \displaystyle \frac{14}{3}

Example Question #751 : Basic Single Variable Algebra

Solve the equation:  \displaystyle \frac{1}{20}x+\frac{2}{15}= \frac{1}{30}

Possible Answers:

\displaystyle 8

\displaystyle 2

\displaystyle -2

\displaystyle -4

\displaystyle \frac{5}{2}

Correct answer:

\displaystyle -2

Explanation:

In order to eliminate the complications of converting fractions, we can multiply both sides by the least common denominator.

Write out the multiples of the denominators.

\displaystyle 15-[15,30,45,60]

\displaystyle 20-[20,40,60]

\displaystyle 30-[30,60]

Multiply both sides of the equation by 60.

\displaystyle 60(\frac{1}{20}x+\frac{2}{15})= 60(\frac{1}{30})

Simplify both sides.

\displaystyle 3x+8 = 2

Subtract eight from both sides.

\displaystyle 3x+8 -8= 2-8

\displaystyle 3x=-6

Divide by three on both sides.

\displaystyle \frac{3x}{3}=\frac{-6}{3}

Simplify both sides.

The answer is:  \displaystyle -2

Example Question #403 : Equations

Solve the equation:  \displaystyle -8x = -8(-x+3)

Possible Answers:

\displaystyle -\frac{3}{2}

\displaystyle -\frac{3}{16}

\displaystyle \frac{3}{2}

\displaystyle 2

Correct answer:

\displaystyle \frac{3}{2}

Explanation:

Use distribution to simplify the right side.

\displaystyle -8x = -8(-x)+(-8)(3)

Simplify the parentheses.

\displaystyle -8x =8x-24

Subtract \displaystyle 8x on both sides.

\displaystyle -8x -8x=8x-24-8x

\displaystyle -16x = -24

Divide by negative 16 on both sides.

\displaystyle \frac{-16x }{-16}= \frac{-24}{-16}

Reduce both fractions.

The answer is:  \displaystyle \frac{3}{2}

Example Question #271 : Solving Equations

Solve the equation:  \displaystyle \frac{x}{5}+\frac{5}{3} = 5

Possible Answers:

\displaystyle \frac{75}{4}

\displaystyle \frac{50}{3}

\displaystyle \frac{25}{3}

\displaystyle \frac{35}{3}

\displaystyle \frac{1}{5}

Correct answer:

\displaystyle \frac{50}{3}

Explanation:

In order to eliminate the fractions, we can multiply both sides by the least common denominator.

The least common denominator can be determined by multiplying the two denominators together.

\displaystyle 5\times 3 = 15

\displaystyle (15)(\frac{x}{5}+\frac{5}{3}) = 5(15)

The equation becomes:

\displaystyle 3x+25 = 75

Subtract both sides by 25.

\displaystyle 3x+25 -25= 75-25

\displaystyle 3x=50

Divide by three on both sides.

\displaystyle \frac{3x}{3}=\frac{50}{3}

The answer is:  \displaystyle \frac{50}{3}

Learning Tools by Varsity Tutors