Algebra II : Solving Equations

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #261 : Solving Equations

Solve the equation:  \displaystyle 81-2x = 9(x+2)

Possible Answers:

\displaystyle \frac{83}{7}

\displaystyle \frac{99}{7}

\displaystyle \frac{63}{11}

\displaystyle 7

\displaystyle 9

Correct answer:

\displaystyle \frac{63}{11}

Explanation:

Use distribution to simplify the right side.

\displaystyle 81-2x = 9(x)+9(2)

\displaystyle 81-2x = 9x+18

Add \displaystyle 2x on both sides.

\displaystyle 81-2x +2x= 9x+18+2x

\displaystyle 81= 11x+18

Subtract 18 from both sides.

\displaystyle 81-18= 11x+18-18

\displaystyle 63= 11x

Divide by 11 on both sides.

\displaystyle \frac{63}{11}= \frac{11x}{11}

The answer is:  \displaystyle \frac{63}{11}

Example Question #262 : Solving Equations

Given the set of equations, solve for \displaystyle x:  \displaystyle \begin{Bmatrix} x-3y= 8\\x+9y=7 \end{Bmatrix}

Possible Answers:

\displaystyle \frac{31}{4}

\displaystyle -\frac{1}{12}

\displaystyle -11

\displaystyle 27

Correct answer:

\displaystyle \frac{31}{4}

Explanation:

In order to solve for the x-variable, we will need use the elimination method to cancel the y-terms.

Multiply the first equation by three, so that we can use addition to turn two equations into one.

\displaystyle \begin{Bmatrix} x-3y= 8\\x+9y=7 \end{Bmatrix} \rightarrow\begin{Bmatrix} 3[x-3y= 8]\\x+9y=7 \end{Bmatrix}\rightarrow \begin{Bmatrix} 3x-9y= 24\\x+9y=7 \end{Bmatrix}

Adding the converted equations together will cancel out the \displaystyle 9y terms, and will leave the x-variable by themselves.  The two equations will become one equation after adding.

\displaystyle 4x=31

Divide by four on both sides.

The answer is:  \displaystyle \frac{31}{4}

Example Question #741 : Basic Single Variable Algebra

Solve the following equation:  \displaystyle 9(-x+9)= -34

Possible Answers:

\displaystyle \frac{47}{9}

\displaystyle \frac{115}{9}

\displaystyle \frac{35}{3}

\displaystyle -\frac{115}{9}

\displaystyle -\frac{47}{9}

Correct answer:

\displaystyle \frac{115}{9}

Explanation:

Distribute the nine through the binomial.

\displaystyle 9(-x)+9(9)= -34

Simplify the terms.

\displaystyle -9x+81 = -34

Subtract 81 from both sides.

\displaystyle -9x+81 -81= -34-81

\displaystyle -9x= -115

Divide by negative nine on both sides.  The negatives will cancel.

The answer is:  \displaystyle \frac{115}{9}

Example Question #264 : Solving Equations

Solve:  \displaystyle -8x-24=-(2-9x)

Possible Answers:

\displaystyle -\frac{22}{17}

\displaystyle -\frac{24}{17}

\displaystyle -26

\displaystyle -\frac{20}{17}

\displaystyle 22

Correct answer:

\displaystyle -\frac{22}{17}

Explanation:

Simplify the right side by distributing the negative sign through the binomial.

\displaystyle -8x-24=-2+9x

Subtract \displaystyle 9x from both sides.

\displaystyle -8x-24-9x=-2+9x-9x

\displaystyle -17x-24=-2

Add 24 on both sides.

\displaystyle -17x-24+24=-2+24

\displaystyle -17x = 22

Divide by negative 17 on both sides.

The answer is:  \displaystyle -\frac{22}{17}

Example Question #391 : Equations

Solve:  \displaystyle 8x-3= 7-8x

Possible Answers:

\displaystyle \frac{5}{4}

\displaystyle \frac{5}{8}

\displaystyle \frac{7}{8}

\displaystyle \frac{1}{4}

Correct answer:

\displaystyle \frac{5}{8}

Explanation:

Add \displaystyle 8x on both sides.

\displaystyle 8x-3+8x= 7-8x+8x

Simplify both sides.

\displaystyle 16x-3 =7

Add three on both sides.

\displaystyle 16x-3+3 =7+3

\displaystyle 16x=10

Divide both sides by 16.

\displaystyle \frac{16x}{16}=\frac{10}{16}

Simplify both sides.

The answer is:  \displaystyle \frac{5}{8}

Example Question #261 : Solving Equations

Solve the equation:  \displaystyle -9x+18 = -32+3x

Possible Answers:

\displaystyle -2

\displaystyle \frac{25}{3}

\displaystyle \frac{50}{3}

\displaystyle \frac{25}{6}

\displaystyle 2

Correct answer:

\displaystyle \frac{25}{6}

Explanation:

Subtract \displaystyle 3x from both sides.

\displaystyle -9x+18 -3x= -32+3x-3x

\displaystyle -12x+18 = -32

Subtract 18 from both sides.

\displaystyle -12x+18 -18= -32-18

\displaystyle -12x =-50

Divide by negative 12 on both sides.

\displaystyle \frac{-12x}{-12} =\frac{-50}{-12}

Reduce the fractions.

The answer is:  \displaystyle \frac{25}{6}

Example Question #267 : Solving Equations

Solve:  \displaystyle \frac{1}{2x}-3 = 9

Possible Answers:

\displaystyle \frac{1}{24}

\displaystyle \frac{1}{2}

\displaystyle \frac{1}{12}

\displaystyle \frac{1}{4}

\displaystyle \frac{1}{6}

Correct answer:

\displaystyle \frac{1}{24}

Explanation:

Add three on both sides.

\displaystyle \frac{1}{2x}-3+3 = 9+3

\displaystyle \frac{1}{2x}=12

Multiply by \displaystyle 2x on both sides.

\displaystyle \frac{1}{2x}\cdot 2x=12\cdot2x

\displaystyle 1=24x

Divide by 24 on both sides.

\displaystyle \frac{1}{24}=\frac{24x}{24}

The answer is:  \displaystyle \frac{1}{24}

Example Question #268 : Solving Equations

Solve the equation:  \displaystyle 3(x-9)=-63

Possible Answers:

\displaystyle -12

\displaystyle 12

\displaystyle 24

\displaystyle -18

\displaystyle 6

Correct answer:

\displaystyle -12

Explanation:

Divide by three on both sides.

\displaystyle \frac{3(x-9)}{3}=\frac{-63}{3}

The equation becomes:  

\displaystyle x-9 =-21

Add nine on both sides.

\displaystyle x-9 +9=-21+9

\displaystyle x=-12

The answer is:  \displaystyle -12

Example Question #269 : Solving Equations

Solve the equation:  \displaystyle -9(x-3)=6-x

Possible Answers:

\displaystyle \frac{21}{38}

\displaystyle \frac{21}{8}

\displaystyle -\frac{33}{10}

\displaystyle \frac{8}{3}

\displaystyle \frac{19}{8}

Correct answer:

\displaystyle \frac{21}{8}

Explanation:

Use distribution to expand the left side of the equation.

\displaystyle -9(x)-(-9)(3)=6-x

\displaystyle -9x+27 = 6-x

Add \displaystyle 9x on both sides.

\displaystyle -9x+27 +9x= 6-x+9x

\displaystyle 27=6+8x

Subtract six from both sides.

\displaystyle 27-6=6+8x-6

\displaystyle 21=8x

Divide by eight on both sides.

The answer is:  \displaystyle \frac{21}{8}

Example Question #401 : Equations

Solve the equation:  \displaystyle 8x-9 = 3x-2

Possible Answers:

\displaystyle -\frac{11}{5}

\displaystyle \frac{7}{5}

\displaystyle \frac{9}{5}

\displaystyle -\frac{9}{5}

\displaystyle -\frac{11}{7}

Correct answer:

\displaystyle \frac{7}{5}

Explanation:

Subtract \displaystyle 3x on both sides.

\displaystyle 8x-9 -3x= 3x-2-3x

\displaystyle 5x-9=-2

Add nine on both sides.

\displaystyle 5x-9+9=-2+9

\displaystyle 5x=7

Divide by five on both sides.

\displaystyle \frac{5x}{5}=\frac{7}{5}

The answer is:  \displaystyle \frac{7}{5}

Learning Tools by Varsity Tutors