SSAT Upper Level Math : SSAT Upper Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #771 : Ssat Upper Level Quantitative (Math)

Triangle_a

Figure NOT drawn to scale.

If \displaystyle x = 72^{\circ } and \displaystyle y = 43^{\circ }, evaluate \displaystyle w.

Possible Answers:

\displaystyle 108^{\circ}

\displaystyle 125^{\circ }

\displaystyle 115^{\circ }

\displaystyle 65^{\circ}

\displaystyle 137^{\circ}

Correct answer:

\displaystyle 115^{\circ }

Explanation:

The measure of an exterior angle of a triangle is the sum of the measures of its remote interior angles, so 

\displaystyle w = x + y = 72 + 43 = 115 ^{\circ }

Example Question #1404 : Concepts

If the vertex angle of an isoceles triangle is \displaystyle 64^{\circ}, what is the value of one of its base angles?

Possible Answers:

\displaystyle 58^{\circ}

\displaystyle 116^{\circ}

\displaystyle 64^{\circ}

\displaystyle 36^{\circ}

\displaystyle 26^{\circ}

Correct answer:

\displaystyle 58^{\circ}

Explanation:

In an isosceles triangle, the base angles are the same. Also, the three angles of a triangle add up to \displaystyle 180^{\circ}.

So, subtract the vertex angle from \displaystyle 180^{\circ}. You get \displaystyle 116^{\circ}.

Because there are two base angles you divide \displaystyle 116^{\circ} by \displaystyle 2, and you get \displaystyle 58^{\circ}.

Example Question #102 : Properties Of Triangles

Triangle

Note: Figure NOT drawn to scale.

Refer to the above diagram. 

\displaystyle 45^{\circ } \leq m \angle 1 \leq 50^{\circ }

\displaystyle 60^{\circ } \leq m \angle 2 \leq 70 ^{\circ }

Which of the following could be a measure of \displaystyle \angle 3 ?

Possible Answers:

\displaystyle 130^{\circ }

All of the other choices give a possible measure of \displaystyle \angle 3.

\displaystyle 100^{\circ }

\displaystyle 110^{\circ }

\displaystyle 125^{\circ }

Correct answer:

\displaystyle 110^{\circ }

Explanation:

The measure of an exterior angle of a triangle is the sum of the measures of its remote interior angles, so 

\displaystyle \angle 3 = \angle 1 + \angle 2.

We also have the following constraints:

\displaystyle 45^{\circ } \leq m \angle 1 \leq 50^{\circ }

\displaystyle 60^{\circ } \leq m \angle 2 \leq 70 ^{\circ }

Then, by the addition property of inequalities,

\displaystyle 45^{\circ } + 60 ^{\circ }\leq m \angle 1 +m \angle 2 \leq 50^{\circ } + 70 ^{\circ }

\displaystyle 105 ^{\circ }\leq m \angle 3 \leq 120^{\circ }

Therefore, the measure of \displaystyle \angle 3 must fall in that range. Of the given choices, only \displaystyle 110^{\circ } falls in that range.

Example Question #103 : Properties Of Triangles

Triangle

Refer to the above diagram. 

\displaystyle 45^{\circ } \leq m \angle 1 \leq 50^{\circ }

\displaystyle 130^{\circ } \leq m \angle 3 \leq 140 ^{\circ }

Which of the following could be a measure of \displaystyle \angle 2 ?

Possible Answers:

\displaystyle 85 ^{\circ }

\displaystyle 80 ^{\circ }

\displaystyle 95 ^{\circ }

\displaystyle 90 ^{\circ }

All of the other responses are correct.

Correct answer:

All of the other responses are correct.

Explanation:

The measure of an exterior angle of a triangle is the sum of the measures of its remote interior angles, so 

\displaystyle \angle 3 = \angle 1 + \angle 2

or 

\displaystyle \angle 2 = \angle 3 - \angle 1

Therefore, the maximum value of \displaystyle \angle 2 is the least possible value of \displaystyle \angle 1 subtracted from the greatest possible value of \displaystyle \angle 3:

\displaystyle 140^{\circ } - 45^{\circ } = 95 ^{\circ }

The minimum value of \displaystyle \angle 2 is the greatest possible value of \displaystyle \angle 1 subtracted from the least possible value of \displaystyle \angle 3:

\displaystyle 130^{\circ } - 50^{\circ } = 80 ^{\circ }

Therefore, 

\displaystyle 80^{\circ } \leq \angle 2 \leq 95^{\circ }

Since all of the choices fall in this range, all are possible measures of \displaystyle \angle 2.

Example Question #772 : Ssat Upper Level Quantitative (Math)

Find the angle measurement of \displaystyle y.

 

Picture1

Possible Answers:

\displaystyle 102

\displaystyle 78

\displaystyle 92

\displaystyle 112

Correct answer:

\displaystyle 102

Explanation:

All the angles in a triangle must add up to \displaystyle 180.

\displaystyle 32+46+y=180

\displaystyle 78+y=180

\displaystyle y=102

Example Question #111 : Properties Of Triangles

Find the angle measurement of \displaystyle a.

 

 

Picture2

Possible Answers:

\displaystyle 100

\displaystyle 110

\displaystyle 120

\displaystyle 70

Correct answer:

\displaystyle 110

Explanation:

All the angles in a triangle must add up to \displaystyle 180.

\displaystyle a+35+35=180

\displaystyle a+70=180

\displaystyle a=110

Example Question #112 : Properties Of Triangles

Find the angle measurement of \displaystyle b.

 

 

Picture3

Possible Answers:

\displaystyle 115

\displaystyle 95

\displaystyle 105

\displaystyle 65

Correct answer:

\displaystyle 115

Explanation:

All the angles in a triangle must add up to \displaystyle 180.

\displaystyle b+28+37=180

\displaystyle b+65=180

\displaystyle b=115

Example Question #113 : Properties Of Triangles

An isosceles triangle has an angle whose measure is \displaystyle 70^{\circ }.

What could be the measures of one of its other angles?

(a) \displaystyle 40^{\circ }

(b)  \displaystyle 55^{\circ }

(c) \displaystyle 70^{\circ }

Possible Answers:

(a) or (c) only

(b) only

(a) only

(c) only

(a), (b), or (c)

Correct answer:

(a), (b), or (c)

Explanation:

By the Isosceles Triangle Theorem, an isosceles triangle has two congruent interior angles. There are two possible scenarios if one angle has measure \displaystyle 70^{\circ }:

Scenario 1: The other two angles are congruent to each other. The degree measures of the interior angles of a triangle total \displaystyle 180^{\circ }, so if we let \displaystyle x be the common measure of those angles:

\displaystyle x + x + 70 = 180

\displaystyle 2x+70 = 180

\displaystyle 2x= 110

\displaystyle x = 55

This makes (b) a possible answer.

Scenario 2: One of the other angles measures \displaystyle 70^{\circ } also, making (c) a possible answer. The degree measure of the third angle is

\displaystyle 180 - (70 + 70) = 180 - 140 = 40,

making (a) a possible answer. Therefore, the correct choice is (a), (b), or (c).

Example Question #114 : Properties Of Triangles

One of the interior angles of a scalene triangle measures \displaystyle 54^{\circ }. Which of the following could be the measure of another of its interior angles?

Possible Answers:

\displaystyle 126^{\circ }

\displaystyle 72^{\circ }

\displaystyle 54^{\circ }

\displaystyle 108^{\circ }

\displaystyle 63^{\circ }

Correct answer:

\displaystyle 108^{\circ }

Explanation:

A scalene triangle has three sides of different measure, so, by way of the Converse of the Isosceles Triangle Theorem, each angle is of different measure as well. We can therefore eliminate \displaystyle 54^{\circ } immediately. 

Also, if the triangle also has a \displaystyle 72^{\circ } angle, then, since the total of the degree measures of the angles is \displaystyle 180^{\circ }, it follows that the third angle has measure

\displaystyle 180 - (54+72) = 180 - 126 = 54 ^{\circ }.

Therefore, the triangle has two angles that measure the same, and \displaystyle 72^{\circ } can be eliminated.

Similarly, if the triangle also has a \displaystyle 63^{\circ } angle, then, since the total of the degree measures of the angles is \displaystyle 180^{\circ }, it follows that the third angle has measure

\displaystyle 180 - (54+63) = 180 - 117= 63 ^{\circ }.

The triangle has two angles that measure \displaystyle 63^{\circ }. This choice can be eliminated.

\displaystyle 126^{\circ } can be eliminated, since the third angle would have measure

\displaystyle 180 - (54+126) = 180 - 180= 0^{\circ },

an impossible situation since angle measures must be positive.

The remaining possibility is \displaystyle 108^{\circ }. This would mean that the third angle has measure

\displaystyle 180 - (54+108) = 180 - 162= 18^{\circ }.

The three angles have different measures, so the triangle is scalene. \displaystyle 108^{\circ } is the correct choice.

Example Question #5 : How To Find An Angle In An Acute / Obtuse Triangle

Given: \displaystyle \bigtriangleup ABC with \displaystyle m \angle A = 20^{\circ }, m \angle B = 32^{\circ }. Locate \displaystyle D on \displaystyle \overline{AB} so that \displaystyle \overrightarrow{CD} is the angle bisector of \displaystyle \angle ACB. What is \displaystyle m \angle CDB ?

Possible Answers:

\displaystyle 74^{\circ }

\displaystyle 79^{\circ }

\displaystyle 84^{\circ }

\displaystyle 69^{\circ }

\displaystyle 89^{\circ }

Correct answer:

\displaystyle 84^{\circ }

Explanation:

Angle bisector

Above is the figure described.

The measures of the interior angles of a triangle total \displaystyle 180^{\circ }, so the measure of \displaystyle \angle ACB is

\displaystyle m \angle ACB = 180^{\circ } -( m \angle A + m \angle B)

\displaystyle = 180^{\circ } -( 20^{\circ } + 32^{\circ })

\displaystyle = 180^{\circ } - 52^{\circ }

\displaystyle = 128^{\circ }

Since \displaystyle \overrightarrow{CD} bisects this angle, 

\displaystyle m \angle BCD= \frac{1}{2}m \angle ACB = \frac{1}{2} \cdot 128^{\circ } =64^{\circ }

and 

\displaystyle m \angle CDB = 180^{\circ } -( m \angle BCD + m \angle B)

\displaystyle = 180^{\circ } -( 64 ^{\circ } + 32^{\circ } )

\displaystyle = 180^{\circ } -96^{\circ }

\displaystyle = 84^{\circ }

 

Learning Tools by Varsity Tutors