SSAT Upper Level Math : SSAT Upper Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #141 : Coordinate Geometry

What is the slope-intercept form of \dpi{100} \small 8x-2y-12=0?

Possible Answers:

\dpi{100} \small y=2x-3

\dpi{100} \small y=-4x+6

\dpi{100} \small y=4x+6

\dpi{100} \small y=-2x+3

\dpi{100} \small y=4x-6

Correct answer:

\dpi{100} \small y=4x-6

Explanation:

The slope intercept form states that \dpi{100} \small y=mx+b. In order to convert the equation to the slope intercept form, isolate \dpi{100} \small y on the left side:

\dpi{100} \small 8x-2y=12

\dpi{100} \small -2y=-8x+12

\dpi{100} \small y=4x-6

Example Question #1441 : Gre Quantitative Reasoning

A line is defined by the following equation:

What is the slope of that line?

Possible Answers:

Correct answer:

Explanation:

The equation of a line is

y=mx + b where m is the slope

Rearrange the equation to match this:

7x + 28y = 84

28y = -7x + 84

y = -(7/28)x + 84/28

y = -(1/4)x + 3

m = -1/4

Example Question #101 : Algebra

If the coordinates (3, 14) and (5, 15) are on the same line, what is the equation of the line?

Possible Answers:

Correct answer:

Explanation:

First solve for the slope of the line, m using y=mx+b

m = (y2 – y1) / (x2 – x1)

= (15  14) / (5 3)

= (1 )/( 8)

=1/8

y = (1/8)x + b

Now, choose one of the coordinates and solve for b:

14 = (1/8)3 + b

14 = 3/8 + b

b = 14 + (3/8)

b = 14.375

y = (1/8)x + 14.375

Example Question #61 : Geometry

What is the equation of a line that passes through coordinates \dpi{100} \small (2,6) and \dpi{100} \small (3,5)?

Possible Answers:

\dpi{100} \small y=2x+4

\dpi{100} \small y=3x+2

\dpi{100} \small y=x+7

\dpi{100} \small y=-x+8

\dpi{100} \small y=2x-4

Correct answer:

\dpi{100} \small y=-x+8

Explanation:

Our first step will be to determing the slope of the line that connects the given points.

Our slope will be . Using slope-intercept form, our equation will be . Use one of the give points in this equation to solve for the y-intercept. We will use \dpi{100} \small (2,6).

Now that we know the y-intercept, we can plug it back into the slope-intercept formula with the slope that we found earlier.

This is our final answer.

Example Question #1 : How To Find The Equation Of A Line

Which of the following equations does NOT represent a line?

Possible Answers:

Correct answer:

Explanation:

The answer is .

A line can only be represented in the form  or , for appropriate constants , , and . A graph must have an equation that can be put into one of these forms to be a line.

 represents a parabola, not a line. Lines will never contain an term.

Example Question #101 : Coordinate Plane

Let y = 3x – 6.

At what point does the line above intersect the following:

 

 

Possible Answers:

(–5,6)

(–3,–3)

(0,–1)

They intersect at all points

They do not intersect

Correct answer:

They intersect at all points

Explanation:

If we rearrange the second equation it is the same as the first equation. They are the same line.

Example Question #2 : Lines

A line has a slope of  and passes through the point . Find the equation of the line.

Possible Answers:

Correct answer:

Explanation:

In finding the equation of the line given its slope and a point through which it passes, we can use the slope-intercept form of the equation of a line:

, where  is the slope of the line and  is its -intercept.

Plug the given conditions into the equation to find the -intercept.

Multiply:

Subtract  from each side of the equation:

Now that you have solved for , you can write out the full equation of the line:

Example Question #62 : Geometry

Find the equation of a line that has a slope of  and passes through the points .

Possible Answers:

Correct answer:

Explanation:

In finding the equation of the line given its slope and a point through which it passes, we can use the slope-intercept form of the equation of a line:

, where  is the slope of the line and  is its -intercept.

Since the problem gives us the slope of the line , we just need to use the point that is given to us to find the -intercept. Plug in known values for  and  taken from the given point into the  equation to find the -intercept:

Multiply:

Subtract  from each side of the equation:

Now that you've solved for , you can plug the given slope  and the -intercept  into the slope-intercept form of the equation of a line to figure out the answer:

Example Question #63 : Geometry

Find the equation of the line that has a slope of  and passes through the point .

Possible Answers:

Correct answer:

Explanation:

In finding the equation of the line given its slope and a point through which it passes, we can use the slope-intercept form of the equation of a line:

, where  is the slope of the line and  is its -intercept.

Since the problem gives us the slope of the line , we just need to use the point that is given to us to find the -intercept. Plug in known values for  and  taken from the given point into the  equation and solve for  to find the -intercept:

 

Multiply:

Subtract  from each side of the equation:

Now, we can write the final equation by plugging in the given slope  and the -intercept :

Example Question #64 : Geometry

Find the equation of the line that has a slope of  and passes through the point .

Possible Answers:

Correct answer:

Explanation:

In finding the equation of the line given its slope and a point through which it passes, we can use the slope-intercept form of the equation of a line:

, where  is the slope of the line and  is its -intercept.

Since the problem gives us the slope of the line , we just need to use the point that is given to us to find the -intercept. Plug in known values for  and  taken from the given point into the  equation and solve for  to find the -intercept:

 

Multiply:

Add  to each side of the equation:

Now, we can write the final equation by plugging in the given slope  and the -intercept :

Learning Tools by Varsity Tutors