SSAT Upper Level Math : SSAT Upper Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #21 : Lines

A line has the equation \displaystyle 8x-7y=14. What is the slope of the line?

Possible Answers:

\displaystyle -\frac{7}{8}

\displaystyle \frac{8}{7}

\displaystyle \frac{7}{8}

\displaystyle -\frac{8}{7}

Correct answer:

\displaystyle \frac{8}{7}

Explanation:

Change the equation into the more familiar \displaystyle y=mx+b form. The value of \displaystyle m will be the slope.

\displaystyle 8x-7y=14

\displaystyle 7y=8x-14

\displaystyle y=\frac{8}{7}x-2

Example Question #2 : How To Find Slope Of A Line

What is the slope of a line that passes through the points \displaystyle (15, -2)\text{ and }(-16, 20)?

Possible Answers:

\displaystyle -\frac{22}{31}

\displaystyle -\frac{31}{22}

\displaystyle \frac{31}{22}

\displaystyle \frac{22}{31}

Correct answer:

\displaystyle -\frac{22}{31}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Plug in the given points to find the slope.

\displaystyle Slope=\frac{20-(-2)}{-16-15}=-\frac{22}{31}

Example Question #3 : How To Find Slope Of A Line

Find the slope of the line that passes through the points \displaystyle (-9, 2)\text{ and }(-2, -2)

Possible Answers:

\displaystyle \frac{7}{4}

\displaystyle \frac{4}{7}

\displaystyle -\frac{4}{7}

\displaystyle -\frac{7}{4}

Correct answer:

\displaystyle -\frac{4}{7}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

\displaystyle \text{Slope}=\frac{-2-2}{-2-(-9)}=-\frac{4}{7}

Example Question #4 : How To Find Slope Of A Line

Find the slope of the line that passes through the points \displaystyle (-6, 2)\text{ and }(4,-4)

Possible Answers:

\displaystyle 5

\displaystyle -\frac{3}{5}

\displaystyle -5

\displaystyle \frac{3}{5}

Correct answer:

\displaystyle -\frac{3}{5}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

\displaystyle \text{Slope}=\frac{-4-2}{4-(-6)}=\frac{-6}{10}=-\frac{3}{5}

Example Question #5 : How To Find Slope Of A Line

Find the slope of the line that passes through the points \displaystyle (1,1)\text{ and }(-8,6).

Possible Answers:

\displaystyle \frac{9}{5}

\displaystyle -\frac{9}{5}

\displaystyle -\frac{5}{9}

\displaystyle \frac{5}{9}

Correct answer:

\displaystyle -\frac{5}{9}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

\displaystyle \text{Slope}=\frac{6-1}{-8-1}=-\frac{5}{9}

Example Question #6 : How To Find Slope Of A Line

Find the slope of the line that passes through the points \displaystyle (2, -3)\text{ and }(-3, -3)

Possible Answers:

\displaystyle \frac{5}{6}

\displaystyle 0

\displaystyle \frac{6}{5}

\displaystyle \text{Undefined}

Correct answer:

\displaystyle 0

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

\displaystyle \text{Slope}=\frac{-3-(-3)}{-3-2}=\frac{0}{-5}=0

Example Question #302 : Ssat Upper Level Quantitative (Math)

Find the slope of the line that passes through the points \displaystyle \left(\frac{1}{3}, -\frac{4}{5}\right) and \displaystyle \left ( -6,10\right ).

Possible Answers:

\displaystyle \frac{162}{95}

\displaystyle -\frac{95}{162}

\displaystyle \frac{95}{162}

\displaystyle -\frac{162}{95}

Correct answer:

\displaystyle -\frac{162}{95}

Explanation:

Use the following formula to find the slope:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

Plug in the given points to find the slope.

\displaystyle \text{Slope}=\frac{10-(-\frac{4}{5})}{-6-\frac{1}{3}}=\frac{\frac{54}{5}}{-\frac{19}{3}}=-\frac{162}{95}

Example Question #7 : How To Find Slope Of A Line

A line goes passes through the points \displaystyle \left(-\frac{1}{2}, 5\right)\text{ and }\left(\frac{3}{2}, -1\right). What is the slope of this line?

Possible Answers:

\displaystyle 3

\displaystyle -3

\displaystyle -\frac{1}{2}

\displaystyle \frac{1}{2}

Correct answer:

\displaystyle -3

Explanation:

Use the following formula to find the slope of a line:

\displaystyle \text{Slope}=\frac{y_2-y_1}{x_2-x_1}

The slope of this line would be

\displaystyle \frac{-1-5}{\frac{3}{2}-(-\frac{1}{2})}=\frac{-6}{2}=-3

Example Question #83 : Coordinate Plane

What is the slope of line 3 = 8y - 4x?

Possible Answers:

-2

2

-0.5

0.5

Correct answer:

0.5

Explanation:

Solve equation for y. y=mx+b, where m is the slope

Example Question #3 : How To Find The Slope Of A Line

Find the slope of the line  6X – 2Y = 14

 

Possible Answers:

-3

-6

12

3

Correct answer:

3

Explanation:

Put the equation in slope-intercept form:

y = mx + b

-2y = -6x +14

y = 3x – 7

The slope of the line is represented by M; therefore the slope of the line is 3.

 

Learning Tools by Varsity Tutors