SSAT Elementary Level Math : SSAT Elementary Level Quantitative (Math)

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #5 : Add Fractions With Unlike Denominators

Solve:

\displaystyle \frac{4}6{+\frac{3}{8}}

Possible Answers:

\displaystyle 1\frac{1}{24}

\displaystyle \frac{25}{48}

\displaystyle \frac{7}{14}

\displaystyle \frac{1}{2}

\displaystyle \frac{24}{25}

Correct answer:

\displaystyle 1\frac{1}{24}

Explanation:

\displaystyle \frac{4}6{+\frac{3}{8}}

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{4}{6}\times\frac{4}{4}=\frac{16}{24}

\displaystyle \frac{3}{8}\times\frac{3}{3}=\frac{9}{24}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{16}{24}+\frac{9}{24}=\frac{25}{24}

\displaystyle \frac{25}{24}=1\frac{1}{24} because \displaystyle 24 can go into \displaystyle 25 one time with \displaystyle 1 left over. 

Example Question #2641 : Ssat Elementary Level Quantitative (Math)

Tammy has \displaystyle 3 squares and Tom has \displaystyle 7 squares. How many squares do they have altogether?

 

Possible Answers:

\displaystyle 10

\displaystyle 9

\displaystyle 8

Correct answer:

\displaystyle 10

Explanation:

\displaystyle 3+7=10

Screen shot 2015 08 27 at 2.54.46 pm

If we count all the squares together we have \displaystyle 10 squares. 

Example Question #102 : Count Within 1000 By 1s, 5s, 10s, And 100s, Ccss.Math.Content.2.Nbt.A.2

What is the missing number? \displaystyle 600, \displaystyle 700, \displaystyle 800, __________, \displaystyle 1\textup,000 

Possible Answers:

\displaystyle 900

\displaystyle 905

\displaystyle 999

\displaystyle 500

\displaystyle 801

Correct answer:

\displaystyle 900

Explanation:

In this series we are counting by \displaystyle 100. When counting by \displaystyle 100, \displaystyle 900 is between \displaystyle 800 and \displaystyle 1\textup,000.

Example Question #955 : Operations & Algebraic Thinking

Which is an example of commutative property? 

Possible Answers:

\displaystyle 6+4+3=13 and \displaystyle 7+6=13

\displaystyle 3+2=5 and \displaystyle 2+3=5

\displaystyle 6+4+3=13 and \displaystyle 10+3=13

\displaystyle 5+2=3 and \displaystyle 2+5=3

Correct answer:

\displaystyle 3+2=5 and \displaystyle 2+3=5

Explanation:

The commutative property says that you can add the numbers in any order and still get the same answer. \displaystyle 3+2 and \displaystyle 2+3 both equal \displaystyle 5

Example Question #12 : Use Addition And Subtraction Within 100 To Solve One And Two Step Word Problems: Ccss.Math.Content.2.Oa.A.1

Joe spent \displaystyle 50\textup { minutes} cleaning his room, \displaystyle 17\textup { minutes} cleaning his bathroom, and \displaystyle 22\textup { minutes} helping his mom clean the kitchen. How much time did Joe spend cleaning? 

Possible Answers:

\displaystyle 67\textup { minutes}

\displaystyle 72\textup { minutes}

\displaystyle 39\textup { minutes}

\displaystyle 89\textup { minutes}

\displaystyle 74\textup { minutes}

Correct answer:

\displaystyle 89\textup { minutes}

Explanation:

This is an addition problem because we want to know how much total time Joe spent cleaning all together. We can add the numbers in any order, \displaystyle 50+17+22=89.

Example Question #11 : Add Fractions With Unlike Denominators

Solve:

\displaystyle \frac{7}8{+\frac{2}{4}}

Possible Answers:

\displaystyle \frac{11}{16}

\displaystyle \frac{9}{12}

\displaystyle \frac{8}{11}

\displaystyle \frac{16}{11}

\displaystyle 1\frac{3}{8}

Correct answer:

\displaystyle 1\frac{3}{8}

Explanation:

\displaystyle \frac{7}8{+\frac{2}{4}}

In order to solve this problem, we first have to find common denominators. \displaystyle \frac{2}{4}\times\frac{2}{2}=\frac{4}{8}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{7}{8}+\frac{4}{8}=\frac{11}{8}

\displaystyle \frac{11}{8}=1\frac{3}{8} because \displaystyle 8 can go into \displaystyle 11 one time with \displaystyle 3 left over. 

Example Question #12 : Add Fractions With Unlike Denominators

Solve:

\displaystyle \frac{3}{5}+\frac{1}3

Possible Answers:

\displaystyle \frac{1}{2}

\displaystyle \frac{13}{15}

\displaystyle \frac{4}{8}

\displaystyle \frac{14}{15}

\displaystyle \frac{14}{30}

Correct answer:

\displaystyle \frac{14}{15}

Explanation:

\displaystyle \frac{3}{5}+\frac{1}3

In order to solve this problem, we first have to find common denominators. 

\displaystyle \frac{3}5{} \times\frac{3}{3}=\frac{9}{15}

\displaystyle \frac{1}{3}\times\frac{5}{5}=\frac{5}{15}

Now that we have common denominators, we can add the fractions. Remember, when we add and subtract fractions, we only add or subtract the numerator. 

\displaystyle \frac{9}{15}+\frac{5}{15}=\frac{14}{15}

Example Question #2429 : Operations

\displaystyle 286+10=

Possible Answers:

\displaystyle 396

\displaystyle 386

\displaystyle 287

\displaystyle 296

\displaystyle 276

Correct answer:

\displaystyle 296

Explanation:

When adding any number by \displaystyle 10 the only number that will change in your answer is the tens place. 

\displaystyle 6+0=6

\displaystyle 8+1=9

\displaystyle 2+0=2

\displaystyle \frac{\begin{array}[b]{r}286\\ +\ 10\end{array}}{\ \ \space296}

Example Question #2 : Find The Number That Makes 10 When Added To Any Number From 1 To 9: Ccss.Math.Content.K.Oa.A.4

How many triangles do I need to add to the \displaystyle 2 triangles below so that I have \displaystyle 10 triangles? 

Screen shot 2015 08 24 at 3.11.18 pm

Possible Answers:

\displaystyle 8

\displaystyle 4

\displaystyle 3

Correct answer:

\displaystyle 8

Explanation:

\displaystyle 2+8=10, so we need to add \displaystyle 8 more triangles to the \displaystyle 2 triangles to have \displaystyle 10.

Screen shot 2015 08 24 at 3.12.21 pm

Example Question #2 : Decompose Numbers Less Than Or Equal To 10 Into Pairs: Ccss.Math.Content.K.Oa.A.3

Which math problem equals \displaystyle 2+1=3?

Possible Answers:

\displaystyle 1+1=2

\displaystyle 3+0=3

\displaystyle 2+0=2

Correct answer:

\displaystyle 3+0=3

Explanation:

\displaystyle 2+1=3 and \displaystyle 3+0=3 both equal \displaystyle 3 so they are equal. 

Learning Tools by Varsity Tutors