SAT Math : Triangles

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #54 : Sat Mathematics

Which set of side lengths CANNOT correspond to a right triangle?

Possible Answers:

5, 12, 13

8, 15, 17

7, 24, 25

6, 8, 11

3, 4, 5

Correct answer:

6, 8, 11

Explanation:

Because we are told this is a right triangle, we can use the Pythagorean Theorem, a2 + b2 = c2. You may also remember some of these as special right triangles that are good to memorize, such as 3, 4, 5.  

Here, 6, 8, 11 will not be the sides to a right triangle because 62 + 82 = 102.

Example Question #55 : Sat Mathematics

Angela drives 30 miles north and then 40 miles east. How far is she from where she began?

 

Possible Answers:

45 miles

50 miles

60 miles

35 miles

Correct answer:

50 miles

Explanation:

By drawing Angela’s route, we can connect her end point and her start point with a straight line and will then have a right triangle. The Pythagorean theorem can be used to solve for how far she is from the starting point: a2+b2=c2, 302+402=c2, c=50. It can also be noted that Angela’s route represents a multiple of the 3-4-5 Pythagorean triple.

 

 

Example Question #56 : Geometry

To get from his house to the hardware store, Bob must drive 3 miles to the east and then 4 miles to the north. If Bob was able to drive along a straight line directly connecting his house to the store, how far would he have to travel then?

Possible Answers:
5 miles
9 miles
7 miles
25 miles
15 miles
Correct answer: 5 miles
Explanation:

Since east and north directions are perpendicular, the possible routes Bob can take can be represented by a right triangle with sides a and b of length 3 miles and 5 miles, respectively. The hypotenuse c represents the straight line connecting his house to the store, and its length can be found using the Pythagorean theorem: c2 = 32+ 42 = 25. Since the square root of 25 is 5, the length of the hypotenuse is 5 miles.

Example Question #53 : Plane Geometry

A park is designed to fit within the confines of a triangular lot in the middle of a city.  The side that borders Elm street is 15 feet long. The side that borders Broad street is 23 feet long. Elm street and Broad street meet at a right angle. The third side of the park borders Popeye street, what is the length of the side of the park that borders Popeye street?

Possible Answers:

27.46 feet

17.44 feet

22.5 feet

16.05 feet

18.5 feet 

Correct answer:

27.46 feet

Explanation:

This question requires the use of Pythagorean Theorem. We are given the length of two sides of a triangle and asked to find the third. We are told that the two sides we are given meet at a right angle, this means that the missing side is the hypotenuse. So we use a+ b= c2, plugging in the two known lengths for a and b. This yields an answer of 27.46 feet.

Example Question #31 : Triangles

A right triangle has legs of 15m and 20m. What is the length of the hypotenuse?

Possible Answers:

45m

30m

25m

35m

40m

Correct answer:

25m

Explanation:

The Pythagorean theorem is a2 + b2 = c2, where a and b are legs of the right triangle, and c is the hypotenuse.

(15)2 + (20)2 = c2 so c2 = 625.  Take the square root to get c = 25m

Example Question #482 : Geometry

Paul leaves his home and jogs 3 miles due north and 4 miles due west. If Paul could walk a straight line from his current position back to his house, how far, in miles, is Paul from home?

Possible Answers:

√14

25

5

7

4

Correct answer:

5

Explanation:

By using the Pythagorean Theorem, we can solve for the distance “as the crow flies” from Paul to his home:

32 + 42 = x2

9 + 16 = x2

25 = x2

5 = x

Example Question #32 : Triangles

Given a right triangle where the two legs have lengths of 3 and 4 respectively, what is the length of the hypotenuse? 

Possible Answers:

9

3

4

5

25

Correct answer:

5

Explanation:

The hypotenuse can be found using Pythagorean Theorem, which is a+ b= c2, so we plug in a = 3 and b = 4 to get c.

c2  =25, so c = 5

Example Question #484 : Geometry

Triangle

Length AB = 4

Length BC = 3

If a similar triangle has a hypotenuse length of 25, what are the lengths of its two legs?

Possible Answers:

3 and 4

5 and 25

15 and 25

15 and 20

20 and 25

Correct answer:

15 and 20

Explanation:

Similar triangles are in proportion.

Use Pythagorean Theorem to solve for AC:

Pythagorean Theorem:  AB2 + BC2 = AC2

42 + 32 = AC2

16 + 9 = AC2

25 = AC2

AC = 5

If the similar triangle's hypotenuse is 25, then the proportion of the sides is AC/25 or  5/25 or 1/5.

Two legs then are 5 times longer than AB or BC:

5 * (AB) = 5 * (4) = 20

5 * (BC) = 5 * (3) = 15

Example Question #33 : Triangles

If the base of a right triangle is 5 cm long and the height of the triangle is 7 cm longer than the base, what is the length of the third side of the triangle in cm?

Possible Answers:

Correct answer:

Explanation:

Find the height of the triangle 

Use the Pythagorean Theorem to solve for the length of the third side, or hypotenuse.

 

Example Question #33 : Right Triangles

Screen_shot_2013-09-16_at_11.16.22_am

Given the right triangle in the diagram, what is the length of the hypotenuse?

 

Possible Answers:

Correct answer:

Explanation:

To find the length of the hypotenuse use the Pythagorean Theorem:

 Where  and  are the legs of the triangle, and  is the hypotenuse.

The hypotenuse is 10 inches long.

 

Learning Tools by Varsity Tutors