SAT Math : Circles

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #521 : Plane Geometry

What is the angle of a sector that has an arc length of \displaystyle 13.5 \displaystyle in on a circle of diameter \displaystyle 12 \displaystyle in?

Possible Answers:

\displaystyle 14.24^{\circ}

\displaystyle 35.81^{\circ}

\displaystyle 128.92^{\circ}

\displaystyle 194.14^{\circ}

\displaystyle 10.74^{\circ}

Correct answer:

\displaystyle 128.92^{\circ}

Explanation:

The first thing to do for this problem is to compute the total circumference of the circle. Notice that you were given the diameter. The proper equation is therefore:

\displaystyle C=\pi d

For your data, this means,

\displaystyle C=12\pi

Now, to compute the angle, note that you have a percentage of the total circumference, based upon your arc length:

\displaystyle \frac{13.5}{12\pi}*360=128.9155039044336

Rounded to the nearest hundredth, this is \displaystyle 128.92^{\circ}.

Example Question #6 : How To Find The Angle Of A Sector

Inscribed angle

Figure NOT drawn to scale.

Refer to the above diagram.\displaystyle \overarc {ABC} is a semicircle. Evaluate \displaystyle m \overarc {AB}.

Possible Answers:

\displaystyle 55^{\circ }

\displaystyle 77 ^{\circ }

\displaystyle 66 ^{\circ }

\displaystyle 88^{\circ }

Insufficient information is given to answer the question.

Correct answer:

\displaystyle 66 ^{\circ }

Explanation:

An inscribed angle of a circle that intercepts a semicircle is a right angle; therefore, \displaystyle \angle B, which intercepts the semicircle \displaystyle \overarc{ABC}, is such an angle. Consequently, \displaystyle m \angle B = 90 ^{\circ }, and \displaystyle \bigtriangleup ABC is a right triangle. The acute angles of \displaystyle \bigtriangleup ABC are complementary, so

\displaystyle m \angle A + m \angle C = 90 ^{\circ }

\displaystyle (7t+1 )+ (4t+1) = 90

\displaystyle 7t+4t+1+1 = 90

\displaystyle 11t+2 = 90

\displaystyle 11t+2 -2 = 90 - 2

\displaystyle 11t = 88

\displaystyle 11t\div 11 = 88 \div 11

\displaystyle t = 8

The measure of inscribed \displaystyle \angle C is 

\displaystyle m \angle C = (4t+1 )^{\circ } = (4 \cdot 8+1 )^{\circ } = 33 ^{\circ }.

An inscribed angle of a circle intercepts an arc of twice its degree measure, so

\displaystyle m \overarc {AB} = 2 \cdot m \angle C= 2 \cdot 33^{\circ } = 66 ^{\circ }.

 

Example Question #271 : Sat Mathematics

Secant 2Figure NOT drawn to scale

Refer to the above figure. \displaystyle \overline{AB} is a diameter of the circle. Evaluate \displaystyle t.

Possible Answers:

\displaystyle t = 34

\displaystyle t = 56

\displaystyle t = 17

\displaystyle t = 68

\displaystyle t = 28

Correct answer:

\displaystyle t = 56

Explanation:

\displaystyle \overline{AB} is a diameter, so \displaystyle \overarc{BC A } is a semicircle, and

\displaystyle m \overarc{BC A } = 180^{\circ },

or, equivalently,

 \displaystyle m \overarc{BC} + m \overarc {AC } = 180^{\circ }

In terms of \displaystyle t, since \displaystyle m \overarc {AC } = t^{\circ },

\displaystyle m \overarc{BC} + t ^{\circ }= 180^{\circ }

\displaystyle m \overarc{BC} + t^{\circ } - t ^{\circ }= 180 ^{\circ } - t^{\circ }

\displaystyle m \overarc{BC} =( 180 - t)^{\circ }

\displaystyle \overline{NB} and \displaystyle \overline{NC }, being a secant segment and a tangent segment to a circle, respectively, intercept two arcs such that the measure of the angle that the segments form is equal to one-half the difference of the measures of the intercepted arcs - that is,

\displaystyle \frac{1}{2} (m \overarc{BC} - m \overarc {AC }) = m \angle CNB

Setting \displaystyle m \overarc{BC} = \left (180 - t \right )^{\circ }\displaystyle m \overarc {AC } = t^{\circ }, and \displaystyle m \angle CNB = 34^{\circ }:

\displaystyle \frac{1}{2}\left [ (180 - t) - t \right ]= 34

\displaystyle \frac{1}{2} (180 - 2t) = 34

\displaystyle \frac{1}{2} \cdot 180 -\frac{1}{2} \cdot 2t = 34

\displaystyle 90 - t= 34

\displaystyle 90-t-90 = 34 -90

\displaystyle -t =- 56

\displaystyle t = 56

Example Question #31 : Circles

Secant

Refer to the above diagram. Evaluate the measure of \displaystyle \angle BND.

Possible Answers:

\displaystyle 37 \frac{1}{2}^{\circ }

\displaystyle 52 \frac{1}{2}^{\circ }

\displaystyle 60^{\circ }

\displaystyle 30^{\circ }

\displaystyle 45 ^{\circ }

Correct answer:

\displaystyle 45 ^{\circ }

Explanation:

The total measure of the arcs that comprise a circle is \displaystyle 360 ^{\circ }, so from the above diagram,

\displaystyle m \overarc { AC}+m \overarc { CD}+ m \overarc { DB} + m \overarc {BA } = 360 ^{\circ }

Substituting the appropriate expression for each arc measure:

\displaystyle t+t+3t+3t = 360

\displaystyle 8t = 360

\displaystyle 8t \div 8 = 360 \div 8

\displaystyle t = 45

Therefore, 

\displaystyle m \overarc { AC}= 45^{\circ } 

and 

\displaystyle m \overarc { DB} = 3 t^{\circ } = 3 \cdot 45^{\circ } = 135^{\circ }

The measure of the angle formed by the tangent segments \displaystyle \overline{NB} and \displaystyle \overline{ND}, which is \displaystyle \angle BND, is half the difference of the measures of the arcs they intercept, so 

\displaystyle m\angle BND = \frac{1}{2} (m \overarc {DB} - m \overarc {AC})

Substituting:

\displaystyle m\angle BND = \frac{1}{2} (135 ^{\circ }- 45^{\circ } )

\displaystyle m\angle BND = \frac{1}{2} (90^{\circ } )

\displaystyle m\angle BND = 45 ^{\circ }

Example Question #21 : Sectors

Inscribed quad

Figure NOT drawn to scale.

The above figure shows a quadrilateral inscribed in a circle. Evaluate \displaystyle u.

Possible Answers:

\displaystyle u= 88

\displaystyle u= 102

\displaystyle u= 92

The question cannot be answered from the information given. 

\displaystyle u= 96

Correct answer:

\displaystyle u= 92

Explanation:

If a quadrilateral is inscribed in a circle, then each pair of its opposite angles are supplementary - that is, their degree measures total \displaystyle 180^{\circ }.

\displaystyle \angle B and \displaystyle \angle D are two such angles, so 

\displaystyle m \angle B + m \angle D = 180 ^{\circ }

Setting \displaystyle m \angle B = 88^{\circ } and \displaystyle m \angle D =u ^{\circ }, and solving for \displaystyle u:

\displaystyle 88+ u = 180

\displaystyle 88+ u - 88 = 180 - 88

\displaystyle u= 92,

the correct response.

Example Question #31 : Circles

Inscribed quad

Figure NOT drawn to scale.

The above figure shows a quadrilateral inscribed in a circle. Evaluate \displaystyle t.

Possible Answers:

\displaystyle 73

\displaystyle 78

\displaystyle 83

The question cannot be answered from the information given. 

\displaystyle 88

Correct answer:

The question cannot be answered from the information given. 

Explanation:

If a quadrilateral is inscribed in a circle, then each pair of its opposite angles are supplementary - that is, their degree measures total \displaystyle 180^{\circ }.

\displaystyle \angle A and \displaystyle \angle C are two such angles, so 

\displaystyle m \angle A + m \angle C= 180 ^{\circ }

Setting \displaystyle m \angle A = t^{\circ } and \displaystyle m \angle C = (180-t)^{\circ }, and solving for \displaystyle t:

\displaystyle t + (180-t)= 180

\displaystyle 180+t-t= 180

\displaystyle 180= 180,

The statement turns out to be true regardless of the value of \displaystyle t. Therefore, without further information, the value of \displaystyle t cannot be determined.

Example Question #11 : How To Find The Angle Of A Sector

Inscribed quad

Figure NOT drawn to scale.

The above figure shows a quadrilateral inscribed in a circle. Evaluate \displaystyle t.

Possible Answers:

\displaystyle t= 84

\displaystyle t = 86

\displaystyle t= 78

\displaystyle t = 80

\displaystyle t = 82

Correct answer:

\displaystyle t= 84

Explanation:

If a quadrilateral is inscribed in a circle, then each pair of its opposite angles are supplementary - that is, their degree measures total \displaystyle 180^{\circ }.

\displaystyle \angle A and \displaystyle \angle C are two such angles, so 

\displaystyle m \angle A + m \angle C= 180 ^{\circ }

Setting \displaystyle m \angle A = t^{\circ } and \displaystyle m \angle C = (t+12)^{\circ }, and solving for \displaystyle t:

\displaystyle t + (t+12 )= 180

\displaystyle 2t +12 = 180

\displaystyle 2t +12 - 12 = 180 - 12

\displaystyle 2t = 168

\displaystyle 2t \div 2 = 168 \div 2

\displaystyle t = 84,

the correct response.

Example Question #11 : How To Find The Angle Of A Sector

Secant 2

Figure NOT drawn to scale.

Refer to the above diagram. \displaystyle \overline{AB} is a diameter. Evaluate \displaystyle m \angle CBA

Possible Answers:

\displaystyle 28^{\circ }

\displaystyle 62^{\circ }

\displaystyle 45^{\circ }

\displaystyle 31^{\circ }

\displaystyle 56^{\circ }

Correct answer:

\displaystyle 31^{\circ }

Explanation:

 \displaystyle \overline{AB} is a diameter, so \displaystyle \overarc{ACB} is a semicircle - therefore, \displaystyle m \overarc{ACB} = 180 ^{\circ }. By the Arc Addition Principle,

\displaystyle m \overarc{AC}+ m \overarc{CB} = 180 ^{\circ }

If we let \displaystyle t ^{\circ }= m \overarc{AC}, then

\displaystyle t ^{\circ }+ m \overarc{CB} = 180 ^{\circ },

and

\displaystyle m \overarc{CB} = (180 -t )^{\circ }

If a secant and a tangent are drawn from a point to a circle, the measure of the angle they form is half the difference of the measures of the intercepted arcs. Since \displaystyle \overline{NC} and \displaystyle \overline{NB} are such segments intercepting \displaystyle \overarc{AC} and \displaystyle \overarc{CB}, it holds that

\displaystyle \frac{1}{2}\left ( m \overarc{CB}- m \overarc{AC} \right ) = m \angle CNB

Setting \displaystyle m \overarc{AC} = t ^{\circ }\displaystyle m \overarc{CB} = (180 -t )^{\circ }, and \displaystyle m \angle CNB = 28 ^{\circ }:

\displaystyle \frac{1}{2} [ \left ( 180-t \right ) - t ] = 28

\displaystyle \frac{1}{2} \left ( 180-2 t \right ) = 28

\displaystyle 90-t = 28

\displaystyle 90-t + t - 28 = 28 + t - 28

\displaystyle 62 = t

\displaystyle m \overarc{AC} =62^{\circ }

The inscribed angle that intercepts this arc, \displaystyle \angle CBA, has half this measure:

\displaystyle m \angle CBA = \frac{1}{2} \cdot m \overarc{AC} = \frac{1}{2} \cdot 62^{\circ } = 31^{\circ }.

This is the correct response.

Example Question #12 : How To Find The Angle Of A Sector

Secant 3Figure NOT drawn to scale.

In the above figure, \displaystyle \overline{AB} is a diameter. Also, the ratio of the length of \displaystyle \overarc{BT} to that of \displaystyle \overarc{AT} is 7 to 5. Give the measure of \displaystyle \angle TNA

Possible Answers:

\displaystyle 21 ^{\circ }

\displaystyle 15^{\circ }

\displaystyle 24 ^{\circ }

\displaystyle 18^{\circ }

The measure of \displaystyle \angle TNA cannot be determine from the information given.

Correct answer:

\displaystyle 15^{\circ }

Explanation:

\displaystyle \overline{AB} is a diameter, so \displaystyle \overarc {ATB} is a semicircle, which has measure \displaystyle 180 ^{\circ }. By the Arc Addition Principle,

\displaystyle m \overarc {AT } + m \overarc {BT} = m \overarc {ATB}

If we let \displaystyle t ^{\circ }= m \overarc {AT }, then, substituting:

\displaystyle t ^{\circ }+ m \overarc {BT} = 180 ^{\circ },

and

\displaystyle m \overarc {BT} =( 180 - t ) ^{\circ }

the ratio of the length of \displaystyle \overarc{BT} to that of \displaystyle \overarc{AT} is 7 to 5; this is also the ratio of their degree measures; that is,

\displaystyle \frac{m \overarc{BT}}{m \overarc{AT}} = \frac{5}{3}

Setting \displaystyle m \overarc {AT } = t ^{\circ } and \displaystyle m \overarc {BT} =( 180 - t ) ^{\circ }:

\displaystyle \frac{180-t }{t} = \frac{7}{5}

Cross-multiply, then solve for \displaystyle t:

\displaystyle 7t = 5 (180-t)

\displaystyle 7t = 900 - 5t

\displaystyle 7t + 5t = 900 - 5t + 5t

\displaystyle 12t = 900

\displaystyle \frac{12t }{12}= \frac{900}{12}

\displaystyle t = 75

\displaystyle m \overarc {AT } =75^{\circ }, and \displaystyle m \overarc {BT} =( 180 -75 ) ^{\circ } = 105 ^{\circ }

If a secant and a tangent are drawn from a point to a circle, the measure of the angle they form is half the difference of the measures of the intercepted arcs. Since \displaystyle \overline{NB} and \displaystyle \overline{NT} are such segments whose angle \displaystyle \angle TNA intercepts \displaystyle \overarc{AT} and \displaystyle \overarc{BT}, it holds that:

\displaystyle m \angle TNA = \frac{1}{2}\left ( m \overarc{BT}- m \overarc{AT} \right )

\displaystyle m \angle TNA = \frac{1}{2}\left ( 105 ^{\circ } - 75^{\circ } \right )

\displaystyle m \angle TNA = \frac{1}{2}\left ( 30 ^{\circ } \right )

\displaystyle m \angle TNA = 15^{\circ }

Example Question #1 : How To Find The Length Of The Diameter

If the area of a circle is four times larger than the circumference of that same circle, what is the diameter of the circle?

Possible Answers:

2

16

4

32

8

Correct answer:

16

Explanation:

Set the area of the circle equal to four times the circumference πr2 = 4(2πr). 

Cross out both π symbols and one r on each side leaves you with r = 4(2) so r = 8 and therefore = 16.

Learning Tools by Varsity Tutors