SAT II Math II : Mathematical Relationships

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #51 : Mathematical Relationships

Solve the absolute value:  

Possible Answers:

Correct answer:

Explanation:

Subtract 2 from both sides.

Under this condition, there are no values of  that will give a negative 14.

The answer is:  

Example Question #52 : Mathematical Relationships

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 7.

Example Question #53 : Mathematical Relationships

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 1.

Example Question #54 : Mathematical Relationships

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 14.

Example Question #55 : Mathematical Relationships

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 10.

Example Question #56 : Mathematical Relationships

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 129.

Example Question #21 : Absolute Value

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 13.

Example Question #22 : Absolute Value

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 10.

Example Question #23 : Absolute Value

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 3.

Example Question #24 : Absolute Value

Solve:

Possible Answers:

Correct answer:

Explanation:

The lines on the outside of this problem indicate it is an absolute value problem. When solving with absolute value, remember that it is a measure of displacement from 0, meaning the answer will always be positive.

For this problem, that gives us a final answer of 2.

Learning Tools by Varsity Tutors