SAT II Math I : SAT Subject Test in Math I

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #5 : 2 Dimensional Geometry

Thingy

Note: figure NOT drawn to scale.

Refer to the above figure. Quadrilateral  is a square. What is the area of Polygon ?

Possible Answers:

Insufficient information is given to calculate the area.

Correct answer:

Explanation:

Polygon  is a composite of  and Square ; its area is the sum of the areas of the two figures.

 is a right triangle; its area is half the product of its legs, which is 

 is both one side of Square  and the hypotenuse of ;  its hypotenuse can be calculated from the lengths of the legs using the Pythagorean Theorem:

.

Square  has area the square of this, which is 89.

Polygon  has as its area the sum of these two areas:

.

Example Question #441 : Sat Subject Test In Math I

Find the area of a circle with a diameter of .

Possible Answers:

Correct answer:

Explanation:

Write the formula for the area of a circle.

Substitute the diameter and solve.

Example Question #2 : Geometry

Rectangle example

Figure not drawn to scale.

Find the area of the rectangle above when the perimeter is 36 in.

Possible Answers:

72 in2

36 in2

144 in2

70 in2

84 in2

Correct answer:

72 in2

Explanation:

Rectangle example

Because we know the perimeter is 36 inches, we can determine the length of side w based on the equation of the perimeter of a rectangle:

Side w is 6 in long.

Now that we know that side w is 6 inches long, we have everythinng we need to calculate the area of the rectangle. 

The area of the rectangle is 72 in2

Example Question #1 : Geometry

Which of the following shapes is a kite?

Shapes

Possible Answers:

Correct answer:

Explanation:

A kite is a four-sided shape with straight sides that has two pairs of sides. Each pair of adjacent sides are equal in length. A square is also considered a kite.

Example Question #1 : How To Find The Area Of A Kite

What is the area of the following kite?

Kites

Possible Answers:

Correct answer:

Explanation:

The formula for the area of a kite:

,

where  represents the length of one diagonal and  represents the length of the other diagonal.

Plugging in our values, we get:

Example Question #2 : How To Find The Area Of A Kite

Find the area of a kite if the diagonal dimensions are  and .

Possible Answers:

Correct answer:

Explanation:

The area of the kite is given below.  The FOIL method will need to be used to simplify the binomial.

Example Question #3 : How To Find The Area Of A Kite

The diagonals of a kite are  and . Find the area.

Possible Answers:

Correct answer:

Explanation:

The formula for the area for a kite is

, where  and  are the lengths of the kite's two diagonals. We are given the length of these diagonals in the problem, so we can substitute them into the formula and solve for the area:

Example Question #1 : How To Find The Area Of A Kite

Find the area of a kite with diagonal lengths of  and .

Possible Answers:

Correct answer:

Explanation:

Write the formula for the area of a kite.

Plug in the given diagonals.

Pull out a common factor of two in  and simplify.

Use the FOIL method to simplify.

Example Question #11 : How To Find The Area Of A Rhombus

Find the area of a rhombus if the diagonals lengths are  and .

Possible Answers:

Correct answer:

Explanation:

Write the formula for the area of a rhombus:

Substitute the given lengths of the diagonals and solve:

Example Question #11 : How To Find The Area Of A Rhombus

Find the area of a rhombus if the diagonals lengths are  and .

Possible Answers:

Correct answer:

Explanation:

Write the formula for finding the area of a rhombus. Substitute the diagonals and evaluate.

Learning Tools by Varsity Tutors