All SAT II Math I Resources
Example Questions
Example Question #2 : Graphing Inequalities
Refer to the above diagram. which of the following compound inequality statements has this set of points as its graph?
A horizontal line has equation for some value of ; since the line goes through a point with -coordinate 3, the line is . Also, since the line is solid and the region above this line is shaded in, the corresponding inequality is .
A vertical line has equation for some value of ; since the line goes through a point with -coordinate 4, the line is . Also, since the line is solid and the region right of this line is shaded in, the corresponding inequality is .
Since only the region belonging to both sets is shaded - that is, their intersection is shaded - the statements are connected with "and". The correct choice is .
Example Question #1 : Graphing Inequalities
Which of the following inequalities is graphed above?
First, we determine the equation of the boundary line. This line includes points and , so the slope can be calculated as follows:
Since we also know the -intercept is , we can substitute in the slope-intercept form to obtain the equation of the boundary line:
The boundary is included, as is indicated by the line being solid, so the equality symbol is replaced by either or . To find out which one, we can test a point in the solution set - for ease, we will choose :
_____
_____
_____
0 is less than 3 so the correct symbol is .
The inequality is .
Example Question #11 : Graphing Linear Functions
Select the equation of the line perpendicular to the graph of .
None of these.
Lines are perpendicular when their slopes are the negative recicprocals of each other such as . To find the slope of our equation we must change it to slope y-intercept form.
Subtract the x variable from both sides:
Divide by 4 to isolate y:
The negative reciprocal of the above slope: . The only equation with this slope is .
Example Question #2 : Graphing Linear Functions
An individual's maximum heart rate can be found by subtracting his or her age from . Which graph correctly expresses this relationship between years of age and maximum heart rate?
In form, where y = maximum heart rate and x = age, we can express the relationship as:
We are looking for a graph with a slope of -1 and a y-intercept of 220.
The slope is -1 because as you grow one year older, your maximum heart rate decreases by 1.
Example Question #862 : Algebra Ii
Which of the following graphs correctly depicts the graph of the inequality
Let's start by looking at the given equation:
The inequality is written in slope-intercept form; therefore, the slope is equal to and the y-intercept is equal to .
All of the graphs depict a line with slope of and y-intercept . Next, we need to decide if we should shade above or below the line. To do this, we can determine if the statement is true using the origin . If the origin satisfies the inequality, we will know to shade below the line. Substitute the values into the given equation and solve.
Because this statement is true, the origin must be included in the shaded region, so we shade below the line.
Finally, a statement that is "less than" or "greater than" requires a dashed line in the graph. On the other hand, those that are "greater than or equal to" or "less than or equal to" require a solid line. We will select the graph with shading below a dashed line.
Example Question #1 : Graphing Quadratic Functions
Give the -coordinate of the vertex of the parabola of the function
The -coordinate of the vertex of a parabola of the form
is
.
Set :
The -coordinate is therefore :
, which is the correct choice.
Example Question #1 : Graphing Quadratic Functions
Give the -intercept(s) of the parabola of the equation
The parabola has no -intercept.
and
and
and
and
Set and solve for :
The terms have a GCF of 2, so
The trinomial in parentheses can be FOILed out by noting that and :
Set each of the linear binomials to 0 and solve for :
or
The parabola has as its two intercepts the points and .
Example Question #3 : Graphing Quadratic Functions
All of the following are equations of down-facing parabolas EXCEPT:
A parabola that opens downward has the general formula
,
as the negative sign in front of the term makes flips the parabola about the horizontal axis.
By contrast, a parabola of the form rotates about the vertical axis, not the horizontal axis.
Therefore, is not the equation for a parabola that opens downward.
Example Question #4 : Graphing Quadratic Functions
Consider the equation:
The vertex of this parabolic function would be located at:
For any parabola, the general equation is
, and the x-coordinate of its vertex is given by
.
For the given problem, the x-coordinate is
.
To find the y-coordinate, plug into the original equation:
Therefore the vertex is at .
Example Question #1 : Graphing Parabolas
In which direction does graph of the parabola described by the above equation open?
down
left
up
right
right
Parabolas can either be in the form
for vertical parabolas or in the form
for horizontal parabolas. Since the equation that the problem gives us has a y-squared term, but not an x-squared term, we know this is a horizontal parabola. The rules for a horizontal parabola are as follows:
- If , then the horizontal parabola opens to the right.
- If , then the horizontal parabola opens to the left.
In this case, the coefficient in front of the y-squared term is going to be positive, once we isolate x. That makes this a horizontal parabola that opens to the right.