All SAT II Math I Resources
Example Questions
Example Question #2 : Graphing Polynomial Functions
Which of the graphs best represents the following function?
None of these
The highest exponent of the variable term is two (). This tells that this function is quadratic, meaning that it is a parabola.
The graph below will be the answer, as it shows a parabolic curve.
Example Question #5 : Graphing Polynomial Functions
Which of the following is a graph for the following equation:
Cannot be determined
The way to figure out this problem is by understanding behavior of polynomials.
The sign that occurs before the is positive and therefore it is understood that the function will open upwards. the "8" on the function is an even number which means that the function is going to be u-shaped. The only answer choice that fits both these criteria is:
Example Question #2 : Graphing Other Functions
Define a function .
for exactly one real value of on the interval .
Which of the following statements is correct about ?
Define . Then, if , it follows that .
By the Intermediate Value Theorem (IVT), if is a continuous function, and and are of unlike sign, then for some . As a polynomial, is a continuous function, so the IVT applies here.
Evaluate for each of the following values:
Only in the case of does it hold that assumes a different sign at both endpoints - . By the IVT, , and , for some .
Example Question #1 : Solving Functions From Word Problems
At Joe's pizzeria a pizza costs $5 with the first topping, and then an additional 75 cents for each additional topping.
If represents the number of toppings on a pizza, what function represents the cost of a pizza with at least one topping?
Notice that the question describes a linear equation because there is a constant rate of change (the cost per topping). This means we can use slope intercept form to describe the scenario.
Recall that slope intercept form is
The value of is the -value when . In this case means there are zero additional toppings and the question tells us that this pizza costs $5 so:
is the slope, or rate of change as increases. In this case each additional topping costs cents. Notice that the units have shifted from dollars to cents so we must write this as
Notice that the first topping is included in the $5 cost. The cent charge only applies to additional toppings. So one less than the number of toppings is equivalent to:
Putting all these steps together we get:
Example Question #1 : 2 Dimensional Geometry
The above figure depicts the rectangular swimming pool at an apartment. The apartment manager needs to purchase a tarp that will cover this pool completely. However, because of the cutting device the pool store uses, the length and the width of the tarp must each be a multiple of three yards. Also, the tarp must be at least one yard longer and one yard wider than the pool.
What will be the minimum area of the tarp the manager purchases?
Three feet make a yard, so the length and width of the pool are yards and yards, respectively. Since the dimensions of the tarp must exceed those of the pool by at least one yard, the tarp must be at least yards by yards; but since both dimensions must be multiples of three yards, we take the next multiple of three for each.
The tarp must be 18 yards by 15 yards, so the area of the tarp is the product of these dimensions, or
square yards.
Example Question #2 : 2 Dimensional Geometry
Note: Figure NOT drawn to scale.
Refer to the figure above, which shows a square inscribed inside a large triangle. What percent of the entire triangle has been shaded blue?
Insufficient information is given to answer the question.
The shaded portion of the entire triangle is similar to the entire large triangle by the Angle-Angle postulate, so sides are in proportion. The short leg of the blue triangle has length 20; that of the large triangle, 30. Therefore, the similarity ratio is . The ratio of the areas is the square of this, or , or .
The blue triangle is therefore of the entire triangle, or of it.
Example Question #3 : 2 Dimensional Geometry
Note: Figure NOT drawn to scale.
Refer to the above diagram. What is the area of ?
Insufficient information is given to answer the problem.
If we see hypotenuse as the base of the large triangle, then we can look at the segment perpendicular to it, , as its altitude. Therefore, the area of is
.
, as the length of the altitude corresponding to the hypotenuse, is the geometric mean of the lengths of the parts of the hypotenuse it forms; that is, the square root of the product of the two:
The area of is therefore
Example Question #4 : 2 Dimensional Geometry
The above figure depicts the rectangular swimming pool at an apartment. The apartment manager needs to purchase a tarp that will cover this pool completely, but the store will only sell the material in multiples of ten square yards. How many square yards will the manager need to buy?
Three feet make a yard, so the length and width of the pool are yards and yards; the area of the pool, and that of the tarp needed to cover it, must be the product of these dimensions, or
square yards.
The manager will need to buy a number of square yards of tarp equal to the next highest multiple of ten, which is 200 square yards.
Example Question #1 : Geometry
Note: Figure NOT drawn to scale.
Refer to the above diagram. In terms of area, is what fraction of ?
Insufficient information is given to answer this question.
The area of , being right, is half the products of its legs, which is:
The area of is one half the product of its base and height; we can use its hypotenuse as the base and as the height, so this area is
Therefore, in terms of area, is of .
Example Question #1 : Geometry
Note: Figure NOT drawn to scale.
Refer to the above diagram. Give the ratio of the area of to that of .
Insufficient information is given to answer the question.
, as the length of the altitude corresponding to the hypotenuse, is the geometric mean of the lengths of the parts of the hypotenuse it forms; that is, it is the square root of the product of the two:
.
The areas of and , each being right, are half the products of their legs, so:
The area of is
The area of is
The ratio of the areas is - that is, 4 to 1.