SAT II Math I : SAT Subject Test in Math I

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #362 : Algebra Ii

 is a sine curve. What are the domain and range of this function?

Question_2

Possible Answers:

Domain: All real numbers

Range:

Domain: All real numbers

Range:

Correct answer:

Domain: All real numbers

Range:

Explanation:

The domain includes the values that go into a function (the x-values) and the range are the values that come out (the  or y-values). A sine curve represent a wave the repeats at a regular frequency. Based upon this graph, the maximum  is equal to 1, while the minimum is equal to –1. The x-values span all real numbers, as there is no limit to the input fo a sine function. The domain of the function is all real numbers and the range is .

Example Question #1 : Domain And Range

Which of the following is NOT a function?

Possible Answers:

Correct answer:

Explanation:

A function has to pass the vertical line test, which means that a vertical line can only cross the function one time.  To put it another way, for any given value of , there can only be one value of .  For the function , there is one value for two possible  values.  For instance, if , then .  But if , as well.  This function fails the vertical line test.  The other functions listed are a line,, the top half of a right facing parabola, , a cubic equation, , and a semicircle, . These will all pass the vertical line test.

Example Question #1 : How To Find The Domain Of A Function

Give the domain of the function below.

  

Possible Answers:

Correct answer:

Explanation:

The domain is the set of possible value for the variable. We can find the impossible values of by setting the denominator of the fractional function equal to zero, as this would yield an impossible equation.

Now we can solve for .

There is no real value of that will fit this equation; any real value squared will be a positive number.

The radicand is always positive, and is defined for all real values of . This makes the domain of  the set of all real numbers.

 

Example Question #2 : Domain And Range

Find the domain:

Possible Answers:

Correct answer:

Explanation:

To find the domain, find all areas of the number line where the fraction is defined.

because the denominator of a fraction must be nonzero.

Factor by finding two numbers that sum to -2 and multiply to 1.  These numbers are -1 and -1.



Example Question #3 : Domain And Range

If , which of these values of  is NOT in the domain of this equation?

Possible Answers:

Correct answer:

Explanation:

Using  as the input () value for this equation generates an output () value that contradicts the stated condition of .

Therefore  is not a valid value for  and not in the equation's domain:

Example Question #2 : Domain And Range

What is the range of the function?

Possible Answers:

Correct answer:

Explanation:

This function is a parabola that has been shifted up five units. The standard parabola has a range that goes from 0 (inclusive) to positive infinity. If the vertex has been moved up by 5, this means that its minimum has been shifted up by five. The first term is inclusive, which means you need a "[" for the beginning.

Minimum: 5 inclusive, maximum: infinity

Range: 

Example Question #4 : Domain And Range

What is the domain of the function?

Possible Answers:

Correct answer:

Explanation:

The domain represents the acceptable  values for this function. Based on the members of the function, the only limit that you have is the non-allowance of a negative number (because of the square root). The square and the linear terms are fine with any numbers. You cannot have any negative values, otherwise the square root will not be a real number.

Minimum: 0 inclusive, maximum: infinity

Domain: 

Example Question #2 : Domain And Range

What is the domain of the function?

Possible Answers:

Correct answer:

Explanation:

The domain of a function refers to the viable  value inputs. Common domain restrictions involve radicals (which cannot be negative) and fractions (which cannot have a zero denominator).

This function does not have any such restrictions; any value of  will result in a real number. The domain is thus unlimited, ranging from negative infinity to infinity.

Domain: 

Example Question #2 : Domain And Range

What is the range of the function?

Possible Answers:

Correct answer:

Explanation:

This function represents a parabola that has been shifted 15 units to the left and 2 units up from its standard position.

The vertex of a standard parabola is at (0,0). By shifting the graph as described, the new vertex is at (-15,2). The  value of the vertex represents the minimum of the range; since the parabola opens upward, the maximum will be infinity. Note that the range is inclusive of 2, so you must use a bracket "[".

Minimum: 2 (inclusive), maximum: infinity

Range: 

Example Question #11 : Range And Domain

What is the domain of the function?

 

Possible Answers:

Correct answer:

Explanation:

The domain of a function refers to the viable  value inputs. Common domain restrictions involve radicals (which cannot be negative) and fractions (which cannot have a zero denominator). Both of these restrictions can be found in the given function.

Let's start with the radical, which must be greater than or equal to zero:

Next, we will look at the fraction denominator, which cannot equal zero:

Our final answer will be the union of the two sets.

Minimum: 2 (inclusive), maximum: infinity

Exclusion: 22

Domain: 

Learning Tools by Varsity Tutors