SAT II Math I : Geometry

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Parabolas And Circles

What is the center of the circle with the following equation?

Possible Answers:

Correct answer:

Explanation:

Remember that the basic form of the equation of a circle is:

This means that the center point  is defined by the two values subtracted in the squared terms.  We could rewrite our equation as:

Therefore, the center is 

Example Question #2 : Parabolas And Circles

What is the area of the sector of the circle formed between the -axis and the point on the circle found at  when the equation of the circle is as follows?

Round your answer to the nearest hundreth.

Possible Answers:

Correct answer:

Explanation:

For this question, we will need to do three things:

  1. Determine the point in question.
  2. Use trigonometry to find the area of the angle in question.
  3. Use the equation for finding a sector area to finalize our answer.

Let us first solve for the coordinate by substituting into our equation:

Our point is, therefore: 

Now, we need to calculate the angle formed between the origin and the point that we were given. We can do this using the inverse tangent function. The ratio of  to  is here: 

Therefore, the angle is:

To solve for the sector area, we merely need to use our standard geometry equation. Note that the radius of the circle, based on the equation, is .

This rounds to .

Example Question #3 : Parabolas And Circles

What is the area of the sector of the circle formed between the -axis and the point on the circle found at  when the equation of the circle is as follows?

Round your answer to the nearest hundreth.

Possible Answers:

Correct answer:

Explanation:

For this question, we will need to do three things:

  1. Determine the point in question.
  2. Use trigonometry to find the area of the angle in question.
  3. Use the equation for finding a sector area to finalize our answer.

Let us first solve for the coordinate by substituting into our equation:

Our point is, therefore: 

Now, we need to calculate the angle formed between the origin and the point that we were given. We can do this using the inverse tangent function. The ratio of  to  is here: 

Therefore, the angle is:

To solve for the sector area, we merely need to use our standard geometry equation. Note that , based on the equation, is .

This rounds to .

Example Question #5 : Parabolas And Circles

If the center of a circle is at  and it has a radius of , what positive point on the  does it intersect?

Possible Answers:

Correct answer:

Explanation:

Since you are looking for a point on the , your  value will be zero.  

The center of the circle is at the origin and radius is the distance from the center, so that means the point you are looking for must be  points away from .  

This can be two points on the  but since you are looking for a positive one, your answer must be .

Example Question #1 : Symmetry

Given a point , what is the new  value if this point is flipped across the line ?

Possible Answers:

Correct answer:

Explanation:

The displacement between negative three and positive one is four.

This mean that after flipping the point, it must be symmetrical to its original location.   The new point must also be 4 units to the right of the line.

The new point would be located at:  

The answer is:  

Example Question #1 : Symmetry

Which of the following symmetries applies to the graph of the relation

 ?

I) Symmetry with respect to the origin

II) Symmetry with respect to the -axis

III) Symmetry with respect to the -axis

Possible Answers:

I only

None of these

II only

III only

I, II and III

Correct answer:

III only

Explanation:

The relation 

is a circle with center  and radius  .

In other words, it is a circle with center at the origin, translated right  units and up  units (the radius is irrelevant to the question).

or

is this circle translated right zero units and up 2 units. The upshot is that the circle moves along the -axis only, and therefore is symmetric with respect to the -axis, but not the -axis. Also, as a consequence, it is not symmetric with respect to the origin.

Example Question #1 : Transformations

Reflect the point  across the line  and then across the origin.

Possible Answers:

Correct answer:

Explanation:

Reflecting the point across the vertical line  will only change the x-value, but not the y-value.

The point after this reflection is: 

Rotating this point across the origin will swap the x and y-values.

The new point is: 

Example Question #1 : Transformations

Let . If  is equal to  when flipped across the x-axis, what is the equation for ?

Possible Answers:

Correct answer:

Explanation:

When a function  is flipped across the x-axis, the new function  is equal to . Therefore, our function  is equal to:

Our final answer is therefore 

Example Question #1 : Transformation

Let . If we let  equal  when it is flipped across the y-axis, what is the equation for ?

Possible Answers:

Correct answer:

Explanation:

When a function  is flipped across the y-axis, the resulting function  is equal to . Therefore, to find our , we must substitute in  for every  is our equation:

Our final answer is therefore 

Example Question #2 : Transformation

Let . If  represents  is shifted  places to the right and  places upwards, what is the equation for ?

Possible Answers:

Correct answer:

Explanation:

When a function  is transformed  units upwards, the new function  is equal to . Likewise, if  is transformed  units to the right, the new function  is equal to . Therfore, we can first find the upwards transformation by adding  to the function:

Now we can apply the horizontal transformation by replacing all 's in the function with . Our transformed function therefore becomes:

We then multiply this out to obtain:

Our final answer is therefore 

 

Learning Tools by Varsity Tutors