SAT II Math I : Geometry

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #322 : Advanced Geometry

What is the area of the following kite?

Kites

Possible Answers:

\displaystyle 30m^2

\displaystyle 20m^2

\displaystyle 15m^2

\displaystyle 8m^2

\displaystyle 10m^2

Correct answer:

\displaystyle 10m^2

Explanation:

The formula for the area of a kite:

\displaystyle A = \frac{1}{2} (a)(b),

where \displaystyle a represents the length of one diagonal and \displaystyle b represents the length of the other diagonal.

Plugging in our values, we get:

\displaystyle A = \frac{1}{2} (4\: m)(5\: m)

\displaystyle A = \frac{1}{2} (20\: m^2) = 10\: m^2

Example Question #12 : Area

Find the area of a kite if the diagonal dimensions are \displaystyle x+3 and \displaystyle x-6.

Possible Answers:

\displaystyle x^2+3x-18

\displaystyle \frac{x^2-3x-18}{2}

\displaystyle \frac{x^2+3x-18}{2}

\displaystyle (x^2-3x-18)\sqrt2

\displaystyle \frac{x^2-3x+18}{2}

Correct answer:

\displaystyle \frac{x^2-3x-18}{2}

Explanation:

The area of the kite is given below.  The FOIL method will need to be used to simplify the binomial.

\displaystyle A=\frac{d1\cdot d2}{2}=\frac{(x+3)(x-6)}{2}= \frac{x^2-6x+3x-18}{2}

\displaystyle A= \frac{x^2-3x-18}{2}

Example Question #331 : Advanced Geometry

The diagonals of a kite are \displaystyle \sqrt10\:cm and \displaystyle \sqrt5\:cm. Find the area.

Possible Answers:

\displaystyle \frac{5\sqrt2}{2}\:cm^2

\displaystyle 5\sqrt2\:cm^2

\displaystyle \sqrt5\:cm^2

\displaystyle 5\:cm^2

\displaystyle \frac{2\sqrt5}{2}\:cm^2

Correct answer:

\displaystyle \frac{5\sqrt2}{2}\:cm^2

Explanation:

The formula for the area for a kite is

\displaystyle A=\frac{d_1\cdot d_2}{2}, where \displaystyle d_1 and \displaystyle d_2 are the lengths of the kite's two diagonals. We are given the length of these diagonals in the problem, so we can substitute them into the formula and solve for the area:

\displaystyle A = \frac{d1\cdot d2}{2} = \frac{\sqrt10 \cdot \sqrt5}{2} = \frac{\sqrt50}{2} = \frac{5\sqrt2}{2}\:cm^2

Example Question #2 : How To Find The Area Of A Kite

Find the area of a kite with diagonal lengths of \displaystyle a+b and \displaystyle 2a-2b.

Possible Answers:

\displaystyle 2a^2+2b^2

\displaystyle a^2+b^2

\displaystyle a^2-ab-b^2

\displaystyle a^2-b^2

\displaystyle 2a^2-2b^2

Correct answer:

\displaystyle a^2-b^2

Explanation:

Write the formula for the area of a kite.

\displaystyle A= \frac{d1\cdot d2}{2}

Plug in the given diagonals.

\displaystyle A= \frac{(a+b)\cdot (2a-2b)}{2}

Pull out a common factor of two in \displaystyle 2a-2b and simplify.

\displaystyle A= \frac{(a+b)\cdot2(a-b)}{2}

\displaystyle A=(a+b)(a-b)

Use the FOIL method to simplify.

\displaystyle A=(a+b)(a-b)= (a)(a)+(a)(-b)+(b)(a)+(b)(-b)

\displaystyle A= a^2-b^2

Example Question #11 : Geometry

Find the area of a rhombus if the diagonals lengths are \displaystyle 20\:cm and \displaystyle 40\:cm.

Possible Answers:

\displaystyle 800\:cm^2

\displaystyle 600\:cm^2

\displaystyle 200\:cm^2

\displaystyle 400\:cm^2

\displaystyle 900\:cm^2

Correct answer:

\displaystyle 400\:cm^2

Explanation:

Write the formula for the area of a rhombus:

\displaystyle A=\frac{d_1 \cdot d_2}{2}

Substitute the given lengths of the diagonals and solve:

\displaystyle A=\frac{d1 \cdot d2}{2} = \frac{20\:cm \cdot 40\:cm}{2} =\frac{800\:cm^2}{2} = 400\:cm^2

Example Question #11 : How To Find The Area Of A Rhombus

Find the area of a rhombus if the diagonals lengths are \displaystyle 2a and \displaystyle 5a^2.

Possible Answers:

\displaystyle 5a^3

\displaystyle 2a+5a^2

\displaystyle 10a^3

\displaystyle 5a^2

\displaystyle 7a^3

Correct answer:

\displaystyle 5a^3

Explanation:

Write the formula for finding the area of a rhombus. Substitute the diagonals and evaluate.

\displaystyle A=\frac{d1\cdot d2}{2}= \frac{2a \cdot 5a^2}{2}= 5a^3

Example Question #13 : Geometry

Give the area of \displaystyle \bigtriangleup ABC to the nearest whole square unit, where:

\displaystyle AB = 19

\displaystyle AC = 25

\displaystyle m \angle A = 57^{\circ }

Possible Answers:

\displaystyle 259

\displaystyle 238

\displaystyle 398

\displaystyle 199

\displaystyle 129

Correct answer:

\displaystyle 199

Explanation:

The area of a triangle with two sides of lengths \displaystyle a and \displaystyle b and included angle of measure \displaystyle \gamma can be calculated using the formula

\displaystyle A = \frac{1}{2} ab \sin \gamma.

Setting \displaystyle a = AB = 19\displaystyle b = AC = 25, and \displaystyle \gamma = m \angle A = 57^{\circ }, then evaluating \displaystyle A:

\displaystyle A = \frac{1}{2} (19 )(25)\sin 57^{\circ }

\displaystyle A = \frac{1}{2} (19 )(25) (0.8387)

\displaystyle A \approx 199.

Example Question #14 : Geometry

Find the area of a triangle with a height of \displaystyle \frac{1}{2} and a base of \displaystyle \frac{1}{4}.

Possible Answers:

\displaystyle \frac{1}{16}

\displaystyle \frac{1}{2}

\displaystyle \frac{3}{4}

\displaystyle \frac{3}{8}

\displaystyle \frac{1}{4}

Correct answer:

\displaystyle \frac{1}{16}

Explanation:

Write the formula for the area of a triangle.

\displaystyle A=\frac{1}{2}bh

Substitute the base and height into the formula.

\displaystyle A=\frac{1}{2}(\frac{1}{2})(\frac{1}{4})

Simplify the fractions.

The answer is:  \displaystyle \frac{1}{16}

Example Question #451 : Sat Subject Test In Math I

Find the area of a circle if the circumference is 3.

Possible Answers:

\displaystyle \frac{9}{4\pi}

\displaystyle \frac{3}{2\pi^2}

\displaystyle \frac{3}{2\pi}

\displaystyle \frac{9}{4}\pi

\displaystyle \frac{9}{4\pi^2}

Correct answer:

\displaystyle \frac{9}{4\pi}

Explanation:

Write the formula for the circumference of a circle.

\displaystyle C=2\pi r

Substitute the circumference.

\displaystyle 3=2\pi r

Divide by \displaystyle 2\pi on both sides.

\displaystyle \frac{3}{2\pi}= r

We will need the formula for the area of the circle.

\displaystyle A=\pi r^2

Substitute the radius to find the area.

\displaystyle A=\pi (\frac{3}{2\pi})^2 = \pi (\frac{3}{2\pi})(\frac{3}{2\pi}) = \frac{9}{4\pi}

The answer is:  \displaystyle \frac{9}{4\pi}

Example Question #12 : 2 Dimensional Geometry

What is the area of a square if the length of the side is \displaystyle \pi\sqrt2?

Possible Answers:

\displaystyle \sqrt{2\pi}

\displaystyle 4\pi ^2

\displaystyle 2\pi ^2

\displaystyle 2\pi

\displaystyle 4\pi

Correct answer:

\displaystyle 2\pi ^2

Explanation:

Write the formula for the area of a square.

\displaystyle A=s^2

Substitute the side into the formula.

\displaystyle A=(\pi\sqrt2)^2 = \pi^2 (2) = 2\pi ^2

The answer is:  \displaystyle 2\pi ^2

Learning Tools by Varsity Tutors