SAT II Math I : Geometry

Study concepts, example questions & explanations for SAT II Math I

varsity tutors app store varsity tutors android store

Example Questions

Example Question #9 : Midpoint Formula

What is the midpoint of a line that connects the points \displaystyle (1,5) and \displaystyle (-7,9)?

Possible Answers:

\displaystyle (-3,7)

\displaystyle (-3,2)

\displaystyle (-4,7)

\displaystyle (-4,-2)

\displaystyle (4,2)

Correct answer:

\displaystyle (-3,7)

Explanation:

The midpoint formula is \displaystyle \left(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\right).

Therefore, all we need to do is plug in the points given to us to find the midpoint.

In this case, \displaystyle x_{1}=1,x_{2}=-7,y_{1}=5,y_{2}=9.

To find the \displaystyle x-value for the midpoint, we add: \displaystyle 1+(-7)=1-7=-6. Then we divide by \displaystyle 2: \displaystyle -6/2=-3.

To find the \displaystyle y-value for the midpoint, we add: \displaystyle 5+9=14. Then we divide by \displaystyle 2: \displaystyle 14/2=7.

So our solution is \displaystyle (-3,7).

Example Question #10 : Midpoint Formula

Find the midpoint of a line with the endpoings (3, 4) and (-1, -1).

Possible Answers:

\displaystyle (4, 5)

\displaystyle (-3, -4)

\displaystyle \left(\frac{3}{2}, 1\right)

\displaystyle \left(1, \frac{3}{2}\right)

\displaystyle (2, 3)

Correct answer:

\displaystyle \left(1, \frac{3}{2}\right)

Explanation:

When finding the midpoint between two points, we use the midpoint formula

\displaystyle \left(\frac{x_1 + x_2}{2}, \frac{y_1+y_2}{2}\right)

where \displaystyle (x_1, y_1) and \displaystyle (x_2, y_2) are the points given. 

 

Knowing this, we can substitute the values into the formula.  We get

\displaystyle \left(\frac{3 + -1}{2}, \frac{4 + - 1}{2}\right)

\displaystyle \left(\frac{3-1}{2}, \frac{4-1}{2}\right)

\displaystyle \left(\frac{2}{2}, \frac{3}{2}\right)

\displaystyle \left(1, \frac{3}{2}\right)

 

Therefore, \displaystyle \left(1, \frac{3}{2}\right) is the midpoint.

Example Question #661 : Equations Of Lines

A line is connected by points \displaystyle (2,5) and \displaystyle (-1,3) on a graph.  What is the midpoint?

Possible Answers:

\displaystyle (-\frac{3}{2},1)

\displaystyle (-\frac{1}{2},4)

\displaystyle (-\frac{3}{2},4)

\displaystyle (\frac{9}{2},4)

\displaystyle (\frac{1}{2},4)

Correct answer:

\displaystyle (\frac{1}{2},4)

Explanation:

Write the midpoint formula.

\displaystyle (x,y) = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})

Let \displaystyle (x_1,y_1) = (2,5) and \displaystyle (x_2,y_2) = (-1,3).

Substitute the given points.

\displaystyle (x,y) = (\frac{2+(-1)}{2}, \frac{5+3}{2})

Simplify the coordinate.

\displaystyle (x,y) =(\frac{1}{2},4)

The answer is:  \displaystyle (\frac{1}{2},4)

Example Question #611 : Sat Subject Test In Math I

Find the midpoint between (2,8) and (8,6).

Possible Answers:

\displaystyle \small (10,14)

\displaystyle \small (5,1)

\displaystyle \small (3,7)

\displaystyle \small (5,7)

\displaystyle \small (3,1)

Correct answer:

\displaystyle \small (5,7)

Explanation:

The midpoint formula says that:

\displaystyle Midpoint=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})

Given (2,8) and (8,6); \displaystyle \small x_{1}=2  \displaystyle \small \small x_{2}=8 \displaystyle \small \small y_{1}=8 \displaystyle \small \small y_{2}=6

Plug the values into the formula and reduce:

\displaystyle (\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})=(\frac{2+8}{2},\frac{8+6}{2})=(5,7)

Example Question #11 : Midpoint Formula

Find the midpoint between \displaystyle (-1,-3) and \displaystyle (3,-1).

Possible Answers:

\displaystyle (-1,-2)

\displaystyle (1,2)

\displaystyle (1,1)

\displaystyle (-1,4)

\displaystyle (1,-2)

Correct answer:

\displaystyle (1,-2)

Explanation:

Write the formula for the midpoint.

\displaystyle M = (\frac{x_1+x_2}{2},\frac{y_1+y_2}{2} )

Substitute the point into the formula.

\displaystyle M = (\frac{-1+3}{2},\frac{-3+(-1)}{2} ) = (1,-2)

The answer is:  \displaystyle (1,-2)

Learning Tools by Varsity Tutors