All PSAT Math Resources
Example Questions
Example Question #321 : Plane Geometry
Ron has a fixed length of wire that he uses to make a lot. On Monday, he uses the wire to make a rectangular lot. On Tuesday, he uses the same length of wire to form a square-shaped lot. Ron notices that the square lot has slightly more area, and he determines that the difference between the areas of the two lots is sixteen square units. What is the positive difference, in units, between the length and the width of the lot on Monday?
12
4
10
8
6
8
Let’s say that the rectangular lot on Monday has a length of l and a width of w. The area of a rectangular is the product of the length and the width, so we can write the area of the lot on Monday as lw.
Next, we need to find an expression for the area of the lot on Tuesday. We are told that the lot is in the shape of a square and that it uses the same length of wire. If the length of the wire used is the same on both days, then the perimeter will have to remain the same. In other words, the perimeter of the square will equal the perimeter of the rectangle. The perimeter of a rectangle is given by 2l + 2w.
We also know that if s is the length of a side of a square, then the perimeter is 4s, because each side of the square is congruent. Let’s write an equation that sets the perimeter of the rectangle and the square equal.
2l + 2w = 4s
If we divide both sides by 4 and then simplify the expression, then we can write the length of the square as follows:
Example Question #11 : Rectangles
A rectangle has a width of 2x. If the length is five more than 150% of the width, what is the area of the rectangle?
5x + 10
5x + 5
6x2 + 10x
10(x + 1)
6x2 + 5
6x2 + 10x
Given that w = 2x and l = 1.5w + 5, a substitution will show that l = 1.5(2x) + 5 = 3x + 5.
A = lw = (3x + 5)(2x) = 6x2 + 10x
Example Question #1 : How To Find The Area Of A Rectangle
Rectangle ABCD is shown in the figure above. Points A and B lie on the graph of y = 64 – x2 , and points C and D lie on the graph of y = x2 – 36. Segments AD and BC are both parallel to the y-axis. The x-coordinates of points A and B are equal to –k and k, respectively. If the value of k changes from 2 to 4, by how much will the area of rectangle ABCD increase?
88
272
176
544
352
176
Example Question #322 : Plane Geometry
George wants to paint the walls in his room blue. The ceilings are 10 ft tall and a carpet 12 ft by 15 ft covers the floor. One gallon of paint covers 400 and costs $40. One quart of paint covers 100 and costs $15. How much money will he spend on the blue paint?
The area of the walls is given by
One gallon of paint covers 400 and the remaining 140 would be covered by two quarts.
So one gallon and two quarts of paint would cost
Example Question #2 : Rectangles
Daisy gets new carpet for her rectangluar room. Her floor is . The carpet sells for $5 per square yard. How much did she spend on her carpet?
Since the room measurements are 7 yards by 8 yards. The area of the floor is thus 56 square yards. It would cost .
Example Question #212 : Geometry
The length of a rectangular rug is five more than twice its width. The perimeter of the rug is 40 ft. What is the area of the rug?
For a rectangle, and where is the width and is the length.
Let and .
So the equation to solve becomes or .
Thus and , so the area is .
Example Question #3 : How To Find The Area Of A Rectangle
The front façade of a building is 100 feet tall and 40 feet wide. There are eight floors in the building, and each floor has four glass windows that are 8 feet wide and 6 feet tall along the front façade. What is the total area of the glass in the façade?
192 ft2
1536 ft2
1536 ft2
2464 ft2
768 ft2
1536 ft2
Glass Area per Window = 8 ft x 6 ft = 48 ft2
Total Number of Windows = Windows per Floor * Number of Floors = 4 * 8 = 32 windows
Total Area of Glass = Area per Window * Total Number of Windows = 48 * 32 = 1536 ft2
Example Question #23 : Rectangles
Note: Figure NOT drawn to scale
What percent of Rectangle is pink?
The pink region is Rectangle . Its length and width are
so its area is the product of these, or
.
The length and width of Rectangle are
so its area is the product of these, or
.
We want to know what percent 117 is of 240, which can be answered as follows:
Example Question #24 : Rectangles
Note: Figure NOT drawn to scale
Refer to the above diagram.
40% of Rectangle is pink. .
Evaluate .
Rectangle has length and width , so it has area
.
300 is 40% of, or 0.40 times, the area of Rectangle , which we will call . We can determine as follows:
.
The length of Rectangle is
,
so its width is
.
Since
,
Example Question #323 : Plane Geometry
Note: Figure NOT drawn to scale
What percent of Rectangle is white?
The pink region is Rectangle . Its length and width are
so its area is the product of these, or
.
The length and width of Rectangle are
so its area is the product of these, or
.
The white region is Rectangle cut from Rectangle , so its area is the difference of the two:
.
So we want to know what percent 162 is of 450, which can be answered as follows:
Certified Tutor