All PSAT Math Resources
Example Questions
Example Question #1 : How To Multiply Odd Numbers
You are given that , , and are positive integers, and
In which of the following cases is odd?
I) Exactly one of is odd.
II) Exactly two of are odd.
III) Exactly three of are odd.
None of these cases
II only
III only
I, II, or III
I only
None of these cases
For the product of three integers to be odd, all three integers must themselves be odd.
At least two of must have the same odd/even status. The sum of those two numbers must be even, and since it is a factor of , then itself must be even.
Example Question #1 : How To Multiply Odd Numbers
If and are both odd integers, which of the following is not necessarily odd?
With many questions like this, it might be easier to plug in numbers rather than dealing with theoretical variables. However, given that this question asks for the expression that is not always even or odd but only not necessarily odd, the theoretical route might be our only choice.
Therefore, our best approach is to simply analyze each answer choice.
: Since is odd, is also odd, since and odd number multiplied by an odd number yields an odd product. Since is also odd, multiplying it by will again yield an odd product, so this expression is always odd.
: Since is odd, multiplying it by 2 will yield an even number. Subtracting this number from will also give an odd result, since an odd number minus an even number gives an odd number. Therefore, this answer is also always odd.
: Since both numbers are odd, their product will also always be odd.
: Since is odd, multiplying it by 2 will give an even number. Since is odd, subtracting it from our even number will give an odd number, since an even number minus and odd number is always odd. Therefore, this answer will always be odd.
: Since both numbers are odd, there sum will be even. However, dividing an even number by another even number (2 in our case) does not always produce an even or an odd number. For example, 5 and 7 are both odd. Their sum, 12, is even. Dividing by 2 gives 6, an even number. However, 5 and 9 are also both odd. Their sum, 14, is even, but dividing by 2 gives 7, an odd number. Therefore, this expression isn't necessarily always odd or always even, and is therefore our answer.
Example Question #1581 : Act Math
Theodore has jelly beans. Portia has three times that amount. Harvey has five times as many as she does. What is the total count of jelly beans in the whole group?
To find the answer to this question, calculate the total jelly beans for each person:
Portia: * <Theodore's count of jelly beans>, which is or
Harvey: * <Portia's count of jelly beans>, which is or
So, the total is:
(Do not forget that you need those original for Theodore!)
Example Question #261 : Arithmetic
If is an odd integer and is an even integer, which of the following must true of ?
The result will be even.
The result will be odd.
We cannot draw any conclusions from the given information.
The result will be odd.
An even number subtracted from an odd number will always produce an odd result.
None of the other answer choices are correct.
Example Question #1541 : Sat Mathematics
If x represents an even integer, which of the following expressions represents an odd integer?
2x – 2
3x + 1
x + 2
3x – 2
5x + 4
3x + 1
Pick any even integer (2, 4, 6, etc.) to represent x. The only value that is odd is 3x + 1. Any number multiplied by an even integer will be even. When an even number is added and subtracted to that product, the result will be even as well. 3x + 1 is the only choice that adds an odd number to the product.
Example Question #1542 : Sat Mathematics
If m and n are both even integers, which of the following must be true?
l. m2/n2 is even
ll. m2/n2 is odd
lll. m2 + n2 is divisible by four
none
I only
II only
I & III only
III only
III only
While I & II can be true, examples can be found that show they are not always true (for example, 22/22 is odd and 42/22 is even).
III is always true – a square even number is always divisible by four, and the distributive property tell us that adding two numbers with a common factor gives a sum that also has that factor.
Example Question #21 : Even / Odd Numbers
Let S be a set that consists entirely of even integers, and let T be the set that consists of each of the elements in S increased by two. Which of the following must be even?
I. the mean of T
II. the median of T
III. the range of T
I only
II only
II and III only
III only
I and II only
III only
S consists of all even integers. If we were to increase each of these even numbers by 2, then we would get another set of even numbers, because adding 2 to an even number yields an even number. In other words, T also consists entirely of even numbers.
In order to find the mean of T, we would need to add up all of the elements in T and then divide by however many numbers are in T. If we were to add up all of the elements of T, we would get an even number, because adding even numbers always gives another even number. However, even though the sum of the elements in T must be even, if the number of elements in T was an even number, it's possible that dividing the sum by the number of elements of T would be an odd number.
For example, let's assume T consists of the numbers 2, 4, 6, and 8. If we were to add up all of the elements of T, we would get 20. We would then divide this by the number of elements in T, which in this case is 4. The mean of T would thus be 20/4 = 5, which is an odd number. Therefore, the mean of T doesn't have to be an even number.
Next, let's analyze the median of T. Again, let's pretend that T consists of an even number of integers. In this case, we would need to find the average of the middle two numbers, which means we would add the two numbers, which gives us an even number, and then we would divide by two, which is another even number. The average of two even numbers doesn't have to be an even number, because dividing an even number by an even number can produce an odd number.
For example, let's pretend T consists of the numbers 2, 4, 6, and 8. The median of T would thus be the average of 4 and 6. The average of 4 and 6 is (4+6)/2 = 5, which is an odd number. Therefore, the median of T doesn't have to be an even number.
Finally, let's examine the range of T. The range is the difference between the smallest and the largest numbers in T, which both must be even. If we subtract an even number from another even number, we will always get an even number. Thus, the range of T must be an even number.
Of choices I, II, and III, only III must be true.
The answer is III only.
Example Question #1 : How To Multiply Even Numbers
If x is an even integer and y is an odd integer. Which of these expressions represents an odd integer?
I. xy
II. x-y
III. 3x+2y
II only
I, II, and III only
I and II only
I and III only
II and III only
II only
I)xy is Even*Odd is Even. II) x-y is Even+/-Odd is Odd. III) 3x is Odd*Even =Even, 2y is Even*Odd=Even, Even + Even = Even. Therefore only II is Odd.
Example Question #21 : Even / Odd Numbers
If x is an even number, y is an odd number, and z is an even number, which of the following will always give an even number?
I. xyz
II. 2x+3y
III. z2 – y
II only
I only
I and II only
II and III only
I, II and III
I only
I. xyz = even * odd * even = even
II. 2x + 3y = even*even + odd*odd = even + odd = odd
III. z2 – y = even * even – odd = even – odd = odd
Therefore only I will give an even number.
Example Question #1 : How To Multiply Even Numbers
If x and y are integers and at least one of them is even, which of the following MUST be true?
xy is even
x + y is odd
x + y is even
Nothing can be determined based on the given information
xy is odd
xy is even
Since we are only told that "at least" one of the numbers is even, we could have one even and one odd integer OR we could have two even integers.
Even plus odd is odd, but even plus even is even, so x + y could be either even or odd.
Even times odd is even, and even times even is even, so xy must be even.