PSAT Math : Arithmetic

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Multiply Odd Numbers

You are given that , and  are positive integers, and

In which of the following cases is  odd?

I) Exactly one of  is odd.

II) Exactly two of  are odd.

III) Exactly three of  are odd.

Possible Answers:

None of these cases

II only

III only

I, II, or III

I only

Correct answer:

None of these cases

Explanation:

For the product of three integers to be odd, all three integers must themselves be odd.

At least two of  must have the same odd/even status. The sum of those two numbers must be even, and since it is a factor of , then  itself must be even.

Example Question #1 : How To Multiply Odd Numbers

If  and  are both odd integers, which of the following is not necessarily odd?

Possible Answers:

Correct answer:

Explanation:

With many questions like this, it might be easier to plug in numbers rather than dealing with theoretical variables.  However, given that this question asks for the expression that is not always even or odd but only not necessarily odd, the theoretical route might be our only choice.

Therefore, our best approach is to simply analyze each answer choice.

:  Since  is odd,  is also odd, since and odd number multiplied by an odd number yields an odd product.  Since  is also odd, multiplying it by  will again yield an odd product, so this expression is always odd.

:  Since  is odd, multiplying it by 2 will yield an even number.  Subtracting this number from  will also give an odd result, since an odd number minus an even number gives an odd number.  Therefore, this answer is also always odd.

:  Since both numbers are odd, their product will also always be odd.

:  Since  is odd, multiplying it by 2 will give an even number.  Since  is odd, subtracting it from our even number will give an odd number, since an even number minus and odd number is always odd.  Therefore, this answer will always be odd.

:   Since both numbers are odd, there sum will be even.  However, dividing an even number by another even number (2 in our case) does not always produce an even or an odd number.  For example, 5 and 7 are both odd.  Their sum, 12, is even.  Dividing by 2 gives 6, an even number.  However, 5 and 9 are also both odd.  Their sum, 14, is even, but dividing by 2 gives 7, an odd number.  Therefore, this expression isn't necessarily always odd or always even, and is therefore our answer.

Example Question #1581 : Act Math

Theodore has  jelly beans. Portia has three times that amount. Harvey has five times as many as she does. What is the total count of jelly beans in the whole group?

Possible Answers:

Correct answer:

Explanation:

To find the answer to this question, calculate the total jelly beans for each person:

Portia:  * <Theodore's count of jelly beans>, which is  or 

Harvey:  * <Portia's count of jelly beans>, which is  or 

So, the total is:

(Do not forget that you need those original  for Theodore!)

Example Question #261 : Arithmetic

If is an odd integer and is an even integer, which of the following must true of ?

Possible Answers:

The result will be even.

The result will be odd.

We cannot draw any conclusions from the given information.

Correct answer:

The result will be odd.

Explanation:

An even number subtracted from an odd number will always produce an odd result.

None of the other answer choices are correct.

Example Question #1541 : Sat Mathematics

If x represents an even integer, which of the following expressions represents an odd integer?

Possible Answers:

2x – 2

3x + 1

x + 2

3x – 2

5x + 4

Correct answer:

3x + 1

Explanation:

Pick any even integer (2, 4, 6, etc.) to represent x. The only value that is odd is 3x + 1. Any number multiplied by an even integer will be even. When an even number is added and subtracted to that product, the result will be even as well. 3x + 1 is the only choice that adds an odd number to the product.

Example Question #1542 : Sat Mathematics

If m and n are both even integers, which of the following must be true?

l. m2/n2 is even

ll. m2/n2 is odd

lll. m2 + n2 is divisible by four

Possible Answers:

none

I only

II only

I & III only

III only

Correct answer:

III only

Explanation:

While I & II can be true, examples can be found that show they are not always true (for example, 22/22 is odd and 42/22 is even).

III is always true – a square even number is always divisible by four, and the distributive property tell us that adding two numbers with a common factor gives a sum that also has that factor.

Example Question #21 : Even / Odd Numbers

Let S be a set that consists entirely of even integers, and let T be the set that consists of each of the elements in S increased by two. Which of the following must be even?

I. the mean of T

II. the median of T

III. the range of T

Possible Answers:

I only

II only

II and III only

 

III only

I and II only

Correct answer:

III only

Explanation:

S consists of all even integers. If we were to increase each of these even numbers by 2, then we would get another set of even numbers, because adding 2 to an even number yields an even number. In other words, T also consists entirely of even numbers.

In order to find the mean of T, we would need to add up all of the elements in T and then divide by however many numbers are in T. If we were to add up all of the elements of T, we would get an even number, because adding even numbers always gives another even number. However, even though the sum of the elements in T must be even, if the number of elements in T was an even number, it's possible that dividing the sum by the number of elements of T would be an odd number.

For example, let's assume T consists of the numbers 2, 4, 6, and 8. If we were to add up all of the elements of T, we would get 20. We would then divide this by the number of elements in T, which in this case is 4. The mean of T would thus be 20/4 = 5, which is an odd number. Therefore, the mean of T doesn't have to be an even number.

Next, let's analyze the median of T. Again, let's pretend that T consists of an even number of integers. In this case, we would need to find the average of the middle two numbers, which means we would add the two numbers, which gives us an even number, and then we would divide by two, which is another even number. The average of two even numbers doesn't have to be an even number, because dividing an even number by an even number can produce an odd number.

For example, let's pretend T consists of the numbers 2, 4, 6, and 8. The median of T would thus be the average of 4 and 6. The average of 4 and 6 is (4+6)/2 = 5, which is an odd number. Therefore, the median of T doesn't have to be an even number.

Finally, let's examine the range of T. The range is the difference between the smallest and the largest numbers in T, which both must be even. If we subtract an even number from another even number, we will always get an even number. Thus, the range of T must be an even number.

Of choices I, II, and III, only III must be true.

The answer is III only.

Example Question #1 : How To Multiply Even Numbers

If x is an even integer and y is an odd integer. Which of these expressions represents an odd integer?

I. xy

II. x-y

III. 3x+2y

Possible Answers:

II only

I, II, and III only

I and II only

I and III only

II and III only

Correct answer:

II only

Explanation:

I)xy is Even*Odd is Even. II) x-y is Even+/-Odd is Odd. III) 3x is Odd*Even =Even, 2y is Even*Odd=Even, Even + Even = Even. Therefore only II is Odd.

Example Question #21 : Even / Odd Numbers

If x is an even number, y is an odd number, and z is an even number, which of the following will always give an even number?


I. xyz

II. 2x+3y

III. z– y

Possible Answers:

II only

I only

I and II only

II and III only

I, II and III

Correct answer:

I only

Explanation:

I. xyz = even * odd * even = even

II. 2x + 3y = even*even + odd*odd = even + odd = odd

III. z– y = even * even – odd = even – odd = odd

Therefore only I will give an even number.

Example Question #1 : How To Multiply Even Numbers

If x and are integers and at least one of them is even, which of the following MUST be true?

Possible Answers:

xy is even

x + y is odd

xis even

Nothing can be determined based on the given information

xy is odd

Correct answer:

xy is even

Explanation:

Since we are only told that "at least" one of the numbers is even, we could have one even and one odd integer OR we could have two even integers.

Even plus odd is odd, but even plus even is even, so xy could be either even or odd.

Even times odd is even, and even times even is even, so xy must be even.

Learning Tools by Varsity Tutors