All PSAT Math Resources
Example Questions
Example Question #1611 : Sat Mathematics
If is a prime number, how many factors does have?
The value of , or , is the product of and , so it will be divisible by 1, p, p * p, and nothing else (we know that the p’s are not divisible because they are prime). Therefore p2 has exactly three factors.
(Alternatively, we can plug in any prime number for p and see how many factors p2 has. For example, if p is 3, then the factors of p2, or 9, are 1, 3, and 9.)
Example Question #1612 : Sat Mathematics
The sum of four consecutive integers is 210. Which one of these four integers is prime?
53
47
57
49
51
53
Let x represent the smallest of the four numbers.
Then we can set up the following equation:
Therefore the four numbers are 51, 52, 53, 54. The only prime in this list is 53.
Example Question #1 : How To Find Out If A Number Is Prime
Which of the following is equal to the sum of the five smallest prime numbers?
27
28
33
25
18
28
It is important to know what a prime number is in order to answer this question. A prime number is defined as any positive integer that is divisible only by the number 1 and itself. For example, 17 is a prime number because its only factors are 1 and 17.
The first five prime numbers are 2, 3, 5, 7, and 11. Remember, 1 is not a prime number, and 2 is the only even prime.
Therefore, the sum of the five smallest prime numbers is 28.
Example Question #292 : Arithmetic
If x is the greatest prime factor of 42, and y is the greatest prime factor of 55, what is the value of xy?
105
21
10
77
15
77
Find the prime factors of 42: 7, 3, 2
Find the prime factors of 55: 5, 11
Product of the greatest factors: 7 and 11 = 77
Example Question #1 : How To Factor A Number
If p is a prime number greater than 1, how many positive factors does p4 have?
Six
Four
Three
Five
Two
Five
3 is a prime number that is easy to work with, so we can plug that in for p. p4 = 81. The positive factors of 81 are 1, 3, 9, 27, and 81. Thus, the answer is five factors.
Let's look at another prime number to plug in for p. If we plug in 2, another easy prime number to work woth, we get p4 = 16. The positive factors of 16 are 1, 2, 4, 8 and 16.
Notice that when p = prime number greater than 1, the positive factors for p4 are 1, p, p2, p3 and p4. Multiplying pn by p only adds pn as a factor when p is prime, so you will have n factors plus 1 which is a factor, so p4 has 5 factors.
Example Question #294 : Arithmetic
What is the sum of all prime factors of 152?
25
6
21
9
25
Since 152 is divisible by 2, start by dividing 152 by 2 which gives you factors of 2 and 76. 2 is a prime factor (cannot be divisible by anything other than itself and 1) but 76 can still be divided by 2. Continue dividing until there are only prime factors. You should get prime factors of 2, 2, 2, and 19. 2+2+2+19 = 25.
Example Question #1631 : Sat Mathematics
Let x, y, and z be three distinct positive integers. Which of the following values of y is possible,
if x3y2z = 1000
2,10
10
5
2,5
2
2,5
If y = 2, then x3z = 250. This means that x could be equal to 1, and z could be equal to 250. This would make x, y, and z distinct positive integers. Thus, it is possible for y to equal 2.
If y = 5, then x3z = 40. This means x could be 1, and z could be 40. This would make x, y, and z distinct positive integers. Therefore, y can equal 5.
If y = 10, then x3z = 10. This means that the only value that x could be is 1. If x were equal to 2, for example, then z would be equal to 10/8, which is not an integer. The same would be true if x were equal to anything other than 1. Thus, x must equal 1, and z must equal 10. However, because y and z must be distinct, y cannot equal 10.
Thus, y could equal only 2 and 5.
Example Question #1631 : Sat Mathematics
The product of three consecutive positive integers is 210. What is the sum of the integers?
Let x be the first integer. The next two integers would then be x+1 and x+2. We must find x such that:
x(x+1)(x+2) = 210.
To do this, we need to look at the factors of 210, and find a set of three factors that are also consecutive integers. First, let's find the prime factorization of 210, because then we can use that to determine all of the possible factors of 210.
210 = 10 x 21 = 2 x 5 x 21 = 2 x 5 x 3 x 7
Thus, the prime factorization of 210 is 2 x 3 x 5 x 7.
We can notice now that 5 and 7 are almost consecutive integers, and the only number missing between them is 6. If we multiply 2 and 3, we get 6. Thus 210 can be written as 5 x 6 x 7. This means that the consecutive integers are 5, 6, and 7, and their sum is 18.
Example Question #292 : Arithmetic
If the variable x is an integer divisible by the numbers 2 and 3, which of the following is necessarily divisible by 2, 3 and 5?
5x + 30
2x + 30
6x + 30
x + 30
5x + 2
5x + 30
For this question, use the fact that a sum of two multiples is a multiple. In other words:
if x is a multiple of 3 and y is a multiple of 3: (x + y) is a multiple of 3.
Thus in this question, x is a multiple of 2 and 3. We need to find a number that is a multiple of 2, 3, and 5.
Take 5x + 30:
[x is divisible by 2. 5 times x is still divisble by 3. 30 is divisible by 2.] -> divisible by 2.
[x is divisible by 3. 5 times x is still divisble by 3. 30 is divisible by 3.] -> divisible by 3.
[5x is divisible by 5. 30 is divisible by 5.] -> divisible by 5.
Example Question #298 : Arithmetic
If xy = 100 and x and y are distinct positive integers, what is the smallest possible value of x + y?
101
20
52
25
29
25
Consider the possible values for (x, y):
(1, 100)
(2, 50)
(4, 25)
(5, 20)
Note that (10, 10) is not possible since the two variables are to be distinct. The sums of the above pairs, respectively, are:
1 + 100 = 101
2 + 50 = 52
4 + 25 = 29
5 + 20 = 25, the smallest possible value.