All MCAT Physical Resources
Example Questions
Example Question #3 : Gravity And Weight
Planet X has mass and radius , and the gravitational acceleration on its surface is . What is the gravitational acceleration at the location of a satellite orbiting at a distance from the surface of planet X?
Gravitational acceleration is related to distance via the equation:
is the gravitational constant, is the mass of the attracting object, and is the distance from its center.
In this case, the initial distance (on the surface) is from the center of planet X, and the distance of the satellite is from the center. We know that gravitational acceleration is proportional to the distance squared, and we know the acceleration at the surface. Using these values, we can solve for the acceleration on the satellite.
By expanding the equation for the acceleration on the satellite, we can see that it is equal to one-sixteenth the acceleration at the surface, based on our original equation. Substitute the value of the surface acceleration to get the final answer.
Example Question #23 : Forces
A ball is thrown vertically with an initial velocity, , and returns to its original position after time . How would the value of be affected if the ball were thrown in the same manner on the moon, where gravitational acceleration is one-sixth the gravitational acceleration on Earth?
Decrease by a factor of
Decrease by a factor of six
Increase by a factor of six
Increase by a factor of
Increase by a factor of six
To solve this question, we will need to use the equation for acceleration:
In this case, the initial velocity will be equal to the final velocity, but opposite in magnitude. The initial velocity is in the upward direction, while the final velocity is downward.
Plug this value into the equation for acceleration.
The velocity value is constant, regardless of the planet. Substitute the acceleration for each planet to determine the change in the time variable.
We can see that the time of flight on the moon is equal to six times the time of flight on Earth.
Example Question #383 : Mcat Physical Sciences
A hypothetical planet has a radius equal to twice that of Earth, with the same mass as Earth. How much would a person weigh on the surface of this hypothetical planet if they weighed 1000N on earth?
The force due to gravity on any object can be given by the equation below.
is the gravitational constant, is the mass of the earth, is the mass of the object, and is the distance between the center of each object.
In our question, the only value to change is the radius of the new planet; both masses and remain constant. The effect of doubling the radius on the force is given below.
The person's weight on the new planet would be one-fourth their weight on Earth.
Example Question #384 : Mcat Physical Sciences
An astronaut standing on a scale on the moon observes that he weighs . If the acceleration due to gravity on the moon's is one-sixth of its value on Earth's surface, what is the astronaut's mass on the earth?
To relate force and mass, we use Newton's second law:
We are given his weight (force) on the moon, and we are told the relative gravitational acceleration on the moon. Using these values, we can find the astronaut's mass.
Since mass is the same regardless of gravitational acceleration, this is the same as the astronaut's mass on the earth.
Example Question #30 : Forces
A person stands on a scale in an elevator. When the elevator is moving upwards at a constant velocity of 0.5m/s, the scale reads 500N. If the elevator then slows down, with a deceleration of 0.5m/s2, what is the new reading?
475N
575N
375N
425N
525N
475N
It may be helpful to start with a free-body diagram showing the forces acting on the person. We have the gravitational force, Fg, downwards, and the normal force of the scale, Fn, upwards.
Use these to write the net force equation.
First we need to solve for the person’s mass, m. When the elevator is moving at a constant rate, we are given that Fn = 500N, and we can solve for m.
.
When the elevator comes to rest, then we have an acceleration of -0.5 m/s2 (downwards acceleration). Plugging this in, we can solve for the new Fn.
Example Question #1 : Gravity And Weight
A 2kg mass is suspended on a rope that wraps around a frictionless pulley attached to the ceiling with a mass of 0.01kg and a radius of 0.25m. The other end of the rope is attached to a massless suspended platform, upon which 0.5kg weights may be placed. While the system is initially at equilibrium, the rope is later cut above the weight, and the platform subsequently raised by pulling on the rope.
What is the apparent weight of the weights on the platform as they fall after the rope has been cut?
19.6N
4.9N
9.8N
0N
0N
First, we need to determine what the apparent weight actually is. If we draw a free body diagram of the weights, we note that the force due to gravity acts downward and the force of the platform on the weights (the normal force) acts upward.
The normal force, FN in the above diagram, is what a scale reads, and is thus the apparent weight. Finding the normal force is not as easy as equating it to the weight because the system is in free-fall, and thus accelerating. We can use Newton’s second law and equate it to acceleration to find the normal force.
Assuming downward is the positive y direction, we can solve for FN.
mg – FN = ma
FN = mg – ma = 0 N
Logically, this makes sense. If an object is in free fall, the acceleration of the system is the same as the acceleration due to gravity.
Example Question #1 : Universal Gravitation
A certain planet has three times the radius of Earth and nine times the mass. How does the acceleration of gravity at the surface of this planet (ag) compare to the acceleration at the surface of Earth (g)?
The acceleration of gravity is given by the equation , where G is constant.
For Earth, .
For the new planet,
.
So, the acceleration is the same in both cases.
Example Question #31 : Forces
A sphere of mass is separated from another sphere of mass by a distance . What is the gravitational force between the two spheres?
The force between two objects is calculated by:
Use our given variables:
Example Question #1 : Force Equilibrium
Which of the following scenarios describes a system that is not in equilibrium?
A racecar driver driving at around a mile-long circular track
All of these scenarios describe systems in equilibrium
A skydiver that has deployed his parachute and is falling straight down at
A tightrope walker balancing on one foot on a wire
A racecar driver driving at around a mile-long circular track
The best way to think of a system in equilibrium is that it is displaying a constant velocity in both the horizontal and vertical directions. Both the skydiver and the tightrope walker have a constant velocity. The driver, however, is driving around a circular track. You must remember that velocity is a vector of magnitude and direction. Because the direction of the driver is changing, he is not driving at a constant velocity; thus, he is not in equilibrium, and is experiencing an acceleration (centripetal acceleration).
Keep in mind that the skydiver is experiencing both the downward force of gravity, and the upward force of air resistence on his deployed parachute. These forces cancel, producing a net force of zero, and allowing him to fall at a constant velocity in equilibrium.
Example Question #1 : Force Equilibrium
Three forces are acting on an object. One force acts on the object to the north, and another force acts on it to the west. The object is accelerating directly westward when all three forces are acting on it.
Based on this information, which of the following statements must be true?
The third force is stronger than the western force
The third force is weaker than the western force
The third force is stronger than the northern force
The third force must have some force in the southern direction
The third force must have some force in the southern direction
Since the only acceleration on the object is to the west, we can conclude that there is no vertical acceleration on the object. As a result, the northern force must be offset by the third force. The only way to offset the northern force is to have a force pointing south, in any direction. As such, the third force could be directly south, southwest, or southeast as long as the southern component can counteract the northern force.
The third force would only need to be equal to the northern force if it was pointing directly due south, and we can only confirm that the third force is not completely offsetting the western force. As a result, we can only conclude that the third force has some magnitude in the southern direction.
Certified Tutor
Certified Tutor