MCAT Physical : Biochemistry, Organic Chemistry, and Other Concepts

Study concepts, example questions & explanations for MCAT Physical

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Reaction Rate And Rate Laws

Which of the following is a second-order rate law?

Possible Answers:

Rate = k[A]1[B]2

Rate = k[A]0[B]1

Rate = k[A]0[B]0

Rate = k[A]1[B]1

Correct answer:

Rate = k[A]1[B]1

Explanation:

The order of a reaction or rate law is given by the sum of the exponents in the rate expression. Rate = k[A]1[B]is the only second-order rate law. This is the case since the reaction order is determined by the number of reactants involved. Rate = k[A]1[B]2 is not second-order; since it has one A reactant and two B reactants, this is a third-order reaction.

Example Question #2 : Reaction Rate And Rate Laws

Consider the reaction .

A set of trials is set up in order to see how manipulating the starting concentrations of reactants can affect the initial rate of the reaction. The experiments are outlined in the table below.

Trial

Initial [A]

Initial [B]

Initial [C]

Initial reaction rate (M/s)

1

0.3

0.4

0.2

0.04

2

0.3

0.4

0.6

0.12

3

0.3

0.8

0.6

0.48

4

0.6

0.4

0.2

0.04

Based on the above information, determine the rate law for the reaction.

Possible Answers:

Correct answer:

Explanation:

The coefficients in front of the reactants simply show the balanced equation, and do NOT give any information on the order of the reactants. The order of the reactants must be determined experimentally by comparing how reaction rates change when the reactant's concentration is altered.

Only the reactant in question must have an altered concentration between two trials; all others must be kept constant. When a reaction rate is doubled and the initial reaction rate is quadrupled, we determine that the reaction is second order with respect to the reactant. If the concentration of a reactant is altered but the reaction rate is unaffected, the order of the reactant is zero. Finally, if the reaction rate and reactant are multiplied by the same factor between two trials, the reactant is first order.

In the table, we can compare trial 1 and 4 to see the effect of doubling A, with constant B and C. This does not affect the rate, to A must be zeroth order. Comparing trials 2 and 3 shows that doubling B, with A and C held constant, will quadruple the rate. The reaction must be second order for B. Finally, comparing trials 1 and 2 shows us that tripling C, with A and B held constant, will triple the reaction rate. The reaction must be first order for C. This yields the rate law .

If the concentration of a reactant is doubled, . The relationship between this change and the change in rate is, therefore, , where n is the order of the reaction with respect to X. This can be reduced to , allowing us to find the reaction order from the experimental rate.

Example Question #2 : Reaction Rate And Rate Laws

What is the order for a reaction with the rate law given below?

Possible Answers:

Fourth order

Third order

Second order

First order

Correct answer:

Third order

Explanation:

The reaction order is equal to the sum of the exponents of the concentration variables in the rate law.

Because reactant B has an exponent of two and reactant C has an exponent of one, the total sum is three, and the reaction is therefore third order.  

Example Question #7 : Reaction Kinetics

A student is studying the kinetics of the following reaction.

In trying to determine the rate law, he collects the following set of data.

Mcat_7

What is the value of if the rate law is ?

Possible Answers:

 

Correct answer:

Explanation:

To determine , the data from any of the three trials could be used. Using trial 1 and the rate law, we can solve for .

 

Note that the units have to be adjusted, based on the order of  and .

Example Question #1 : Reaction Kinetics

A scientist is studying a reaction, and places the reactants in a beaker at room temperature. The reaction progresses, and she analyzes the products via NMR. Based on the NMR readout, she determines the reaction proceeds as follows:

In an attempt to better understand the reaction process, she varies the concentrations of the reactants and studies how the rate of the reaction changes. The table below shows the reaction concentrations as she makes modifications in three experimental trials.

 

What is the overall order for this reaction as written?

Possible Answers:

First order overall

Third order overall

Zero order overall

Second order overall

Fourth order overall

Correct answer:

Second order overall

Explanation:

The rate law is written as .

Compare trials 1 and 2 to see that doubling the ammonium concentration doubles the rate. The reaction is first order for ammonium: .

Compare tirals 2 and 3 to see that tripling nitrate concentration triples the rate. The reaction is first order for nitrate: .

The final rate law is .

The sum of the orders for each reactant gives you the overall order of the reaction. In this case, the reaction is first order with regard to each reactant, and is thus second order overall.

Example Question #2 : Reaction Kinetics

Which of the following parameters can affect the rate of the given reaction?

Possible Answers:

Each of these can affect the rate law

Changing the ratio of products to reactants

Introducing an enzyme

Running the reaction in reverse

Altering the temperature

Correct answer:

Each of these can affect the rate law

Explanation:

The rate law for the given reaction will be given by the formula:

The variables and need to be determined experimentally, and the value will be given by another formula.

The coefficient is a constant, and the variables in the exponent are the activation energy and temperature.

Adding an enzyme will lower the activation energy, affecting the rate constant. Changing the temperature will also affect the rate constant. Adjusting the ratio of reactants to products will alter the concentrations of the reactants. As the reaction runs, the rate declines as the reactants are consumed until it reaches equilibrium. Changing the reactant concentrations will change the reaction rate with respect to this equilibrium. Running the reaction in reverse will result in a completely different rate law since the reactants will be altered.

Example Question #10 : Reaction Kinetics

A student is studying the kinetics of the following reaction.

In trying to determine the rate law, he collects the following set of data. 

Mcat_7

Based on these data, what is the rate law for this reaction?

Possible Answers:

Correct answer:

Explanation:

The rate law will have the general formula . The exponents,  and , DO NOT necessarily correlate with the reaction stoichiometry. They must be determined from the experimental data.

To determine , compare trials 1 and 3, where  is held constant.

  

Since  is constant and  is the same for both experiments, by plugging in the values for rate and  for trials 1 and 3, we get this equation.

.  

This reduces to , which means .  

To find , compare trials 1 and 2, where  is held constant. Following the same type of calculation as shown above would give .

The rate law is .

Example Question #11 : Reaction Kinetics

A scientist is studying a reaction, and places the reactants in a beaker at room temperature. The reaction progresses, and she analyzes the products via NMR. Based on the NMR readout, she determines the reaction proceeds as follows:

In an attempt to better understand the reaction process, she varies the concentrations of the reactants and studies how the rate of the reaction changes. The table below shows the reaction concentrations as she makes modifications in three experimental trials.

 

Which of the following most closely approximates the rate law for this reaction?

Possible Answers:

Correct answer:

Explanation:

The reaction table in the passage indicates that the reaction rate varies in a 1-to-1 fashion as you vary the each reactant, while holding the other constant.

The rate law is written as .

Compare trials 1 and 2 to see that doubling the ammonium concentration doubles the rate. The reaction is first order for ammonium: .

Compare trials 2 and 3 to see that tripling nitrate concentration triples the rate. The reaction is first order for nitrate: .

The final rate law is .

 

Example Question #11 : Reaction Kinetics

The rate for a reaction is given by the equation . What is the overall order of the reaction?

Possible Answers:

2

4

1

3

5

Correct answer:

3

Explanation:

To find the overall order of a reaction, look at the exponents for the reaction rate law. Since A has an exponent of two and B has an exponent of one, the overall reaction has an order of three. 

Example Question #12 : Reaction Kinetics

A first-order reaction has a rate constant:

How long does it take for the concentration of the reactant to reach one-fourth of its original amount?

Possible Answers:

Correct answer:

Explanation:

For a first order reaction, use the equation:

In this formula,  is the concentration at a given time,   is the initial concentration,  is the rate constant, and is the time elapsed.

If we assume the initial concentration to be , then we can use as the final concentration. Using these values and the given rate constant, we can calculate the time.

Learning Tools by Varsity Tutors