Linear Algebra : Operations and Properties

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #6 : Symmetric Matrices

\(\displaystyle \begin{align*}&\text{Which of the following matrices is symmetric?}\end{align*}\)

Possible Answers:

\(\displaystyle \begin{bmatrix}-2&5&-10&-10&5&-2\\8&-3&-2&-2&-3&8\\5&-14&7&7&-14&5\\18&-17&-16&-16&-17&18\\-10&-4&-2&-2&-4&-10\\-11&-15&-13&-13&-15&-11\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-10&0&-17&-20&-13&18\\18&1&-11&-16&14&-15\\-16&-15&14&-9&11&-13\\-16&-15&14&-9&11&-13\\18&1&-11&-16&14&-15\\-10&0&-17&-20&-13&18\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-7&16&-4&18&4&1\\16&-6&3&9&11&18\\-4&3&-17&3&-18&-3\\18&9&3&0&4&1\\4&11&-18&4&-4&-6\\1&18&-3&1&-6&16\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-26&11&16&17&-4&-1\\20&-22&-2&9&8&-17\\24&7&-19&4&-19&2\\9&2&-4&8&21&5\\5&-1&-27&14&-14&-1\\6&-8&10&-3&-9&6\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix}-7&16&-4&18&4&1\\16&-6&3&9&11&18\\-4&3&-17&3&-18&-3\\18&9&3&0&4&1\\4&11&-18&4&-4&-6\\1&18&-3&1&-6&16\end{bmatrix}\)

Explanation:

\(\displaystyle \begin{align*}&\text{A symmetric matrix is one that is equal to its transpose, i.e:}\\&A=A^{T}\\&\text{To review, a transpose of a matrix is one in which the first row becomes the first column,}\\&\text{the second row the second column, etc.}\\&\text{Therefore, the symmetric matrix is:}\\&\begin{bmatrix}-7&16&-4&18&4&1\\16&-6&3&9&11&18\\-4&3&-17&3&-18&-3\\18&9&3&0&4&1\\4&11&-18&4&-4&-6\\1&18&-3&1&-6&16\end{bmatrix}\end{align*}\)

Example Question #1 : Symmetric Matrices

\(\displaystyle \begin{align*}&\text{Which of the following matrices is symmetric?}\end{align*}\)

Possible Answers:

\(\displaystyle \begin{bmatrix}4&-16&6&-2&6&-16&4\\0&-11&3&3&3&-11&0\\12&2&-7&13&-7&2&12\\7&-13&-18&-17&-18&-13&7\\-10&-17&15&12&15&-17&-10\\19&0&18&-13&18&0&19\\-10&-20&2&-8&2&-20&-10\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-3&1&-4&19&8&-5&20\\1&-4&-5&5&-11&0&19\\-4&-5&15&-11&20&-18&14\\19&5&-11&6&3&-9&-4\\8&-11&20&3&1&6&-4\\-5&0&-18&-9&6&2&20\\20&19&14&-4&-4&20&-15\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}18&8&19&-18&16&9&-1\\-13&12&13&17&-19&-13&15\\-15&-14&-19&-5&9&19&-8\\10&1&-9&-10&18&13&13\\-15&-14&-19&-5&9&19&-8\\-13&12&13&17&-19&-13&15\\18&8&19&-18&16&9&-1\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-12&16&13&19&26&0&2\\24&5&-19&29&-19&16&-10\\21&-26&16&13&-17&16&7\\12&20&4&22&18&-3&-12\\17&-26&-9&10&-15&6&11\\-9&23&8&6&-3&8&8\\10&-18&0&-21&19&15&4\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix}-3&1&-4&19&8&-5&20\\1&-4&-5&5&-11&0&19\\-4&-5&15&-11&20&-18&14\\19&5&-11&6&3&-9&-4\\8&-11&20&3&1&6&-4\\-5&0&-18&-9&6&2&20\\20&19&14&-4&-4&20&-15\end{bmatrix}\)

Explanation:

\(\displaystyle \begin{align*}&\text{A symmetric matrix is one that is equal to its transpose, i.e:}\\&A=A^{T}\\&\text{To review, a transpose of a matrix is one in which the first row becomes the first column,}\\&\text{the second row the second column, etc.}\\&\text{Therefore, the symmetric matrix is:}\\&\begin{bmatrix}-3&1&-4&19&8&-5&20\\1&-4&-5&5&-11&0&19\\-4&-5&15&-11&20&-18&14\\19&5&-11&6&3&-9&-4\\8&-11&20&3&1&6&-4\\-5&0&-18&-9&6&2&20\\20&19&14&-4&-4&20&-15\end{bmatrix}\end{align*}\)

Example Question #8 : Symmetric Matrices

\(\displaystyle \begin{align*}&\text{Which of the following matrices is symmetric?}\end{align*}\)

Possible Answers:

\(\displaystyle \begin{bmatrix}14&19&-17&12&-2&-1&-14\\3&15&13&-4&13&3&-5\\-14&20&-4&8&-20&18&12\\-7&16&5&13&12&-11&-9\\-14&20&-4&8&-20&18&12\\3&15&13&-4&13&3&-5\\14&19&-17&12&-2&-1&-14\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}17&10&13&-18&10&5&3\\10&-14&-7&5&-7&8&-8\\13&-7&20&1&15&-20&-7\\-18&5&1&-15&9&16&-6\\10&-7&15&9&18&-11&3\\5&8&-20&16&-11&-3&11\\3&-8&-7&-6&3&11&20\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}15&14&-14&0&-14&14&15\\-7&13&-11&-13&-11&13&-7\\10&-12&18&11&18&-12&10\\18&-15&-5&-19&-5&-15&18\\-7&11&5&19&5&11&-7\\-3&8&14&4&14&8&-3\\-11&-7&14&-14&14&-7&-11\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-21&-16&14&-5&-2&17&-20\\-23&-1&-20&-19&25&-25&-2\\22&-13&-3&-12&-19&2&9\\2&-26&-5&-12&10&-26&-16\\-10&17&-11&2&5&30&-11\\25&-16&-5&-18&21&18&2\\-27&5&17&-9&-3&10&1\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix}17&10&13&-18&10&5&3\\10&-14&-7&5&-7&8&-8\\13&-7&20&1&15&-20&-7\\-18&5&1&-15&9&16&-6\\10&-7&15&9&18&-11&3\\5&8&-20&16&-11&-3&11\\3&-8&-7&-6&3&11&20\end{bmatrix}\)

Explanation:

\(\displaystyle \begin{align*}&\text{A symmetric matrix is one that is equal to its transpose, i.e:}\\&A=A^{T}\\&\text{To review, a transpose of a matrix is one in which the first row becomes the first column,}\\&\text{the second row the second column, etc.}\\&\text{Therefore, the symmetric matrix is:}\\&\begin{bmatrix}17&10&13&-18&10&5&3\\10&-14&-7&5&-7&8&-8\\13&-7&20&1&15&-20&-7\\-18&5&1&-15&9&16&-6\\10&-7&15&9&18&-11&3\\5&8&-20&16&-11&-3&11\\3&-8&-7&-6&3&11&20\end{bmatrix}\end{align*}\)

Example Question #151 : Linear Algebra

\(\displaystyle \begin{align*}&\text{Which of the following matrices is symmetric?}\end{align*}\)

Possible Answers:

\(\displaystyle \begin{bmatrix}5&19&8&19&5\\13&-9&-8&-9&13\\3&-15&17&-15&3\\16&-16&-7&-16&16\\12&-20&3&-20&12\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}3&-19&-10&-18&-16\\9&16&-19&-8&-7\\-9&-2&17&8&-15\\9&16&-19&-8&-7\\3&-19&-10&-18&-16\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-13&6&13&2&-17\\6&19&17&14&-7\\13&17&7&-10&-13\\2&14&-10&-6&-15\\-17&-7&-13&-15&4\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}10&-34&2&14&-4\\-25&19&2&5&-13\\-5&-6&1&-15&-35\\5&-4&-7&24&1\\3&-6&-26&9&-2\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix}-13&6&13&2&-17\\6&19&17&14&-7\\13&17&7&-10&-13\\2&14&-10&-6&-15\\-17&-7&-13&-15&4\end{bmatrix}\)

Explanation:

\(\displaystyle \begin{align*}&\text{A symmetric matrix is one that is equal to its transpose, i.e:}\\&A=A^{T}\\&\text{To review, a transpose of a matrix is one in which the first row becomes the first column,}\\&\text{the second row the second column, etc.}\\&\text{Therefore, the symmetric matrix is:}\\&\begin{bmatrix}-13&6&13&2&-17\\6&19&17&14&-7\\13&17&7&-10&-13\\2&14&-10&-6&-15\\-17&-7&-13&-15&4\end{bmatrix}\end{align*}\)

Example Question #152 : Linear Algebra

\(\displaystyle \begin{align*}&\text{Select the symmetric matrix from the following choices:}\end{align*}\)

Possible Answers:

\(\displaystyle \begin{bmatrix}-12&-18&15&-14&-3&9\\-19&7&16&-10&-3&15\\13&-19&-5&-14&-10&-15\\13&-19&-5&-14&-10&-15\\-19&7&16&-10&-3&15\\-12&-18&15&-14&-3&9\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-18&19&-4&-33&-16&-35\\28&5&-5&-12&7&14\\-11&-12&14&-15&11&14\\-26&-21&-6&0&14&-1\\-8&-1&2&5&4&-6\\-28&21&23&-10&2&-18\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}14&6&-12&-3&-4&4\\6&17&17&-13&1&-4\\-12&17&-13&-20&4&-17\\-3&-13&-20&-2&16&9\\-4&1&4&16&-10&-13\\4&-4&-17&9&-13&-13\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-14&-8&8&8&-8&-14\\-8&0&4&4&0&-8\\-7&15&1&1&15&-7\\15&-8&-7&-7&-8&15\\3&8&18&18&8&3\\1&-18&-20&-20&-18&1\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix}14&6&-12&-3&-4&4\\6&17&17&-13&1&-4\\-12&17&-13&-20&4&-17\\-3&-13&-20&-2&16&9\\-4&1&4&16&-10&-13\\4&-4&-17&9&-13&-13\end{bmatrix}\)

Explanation:

\(\displaystyle \begin{align*}&\text{A symmetric matrix is equal to its transpose, that is to say:}\\&A=A^{T}\\&\text{A transpose of a matrix is one in which the first row becomes the first column,}\\&\text{the second row the second column, and so on.}\\&\text{The symmetric matrix is:}\\&\begin{bmatrix}14&6&-12&-3&-4&4\\6&17&17&-13&1&-4\\-12&17&-13&-20&4&-17\\-3&-13&-20&-2&16&9\\-4&1&4&16&-10&-13\\4&-4&-17&9&-13&-13\end{bmatrix}\end{align*}\)

Example Question #153 : Linear Algebra

\(\displaystyle \begin{align*}&\text{Decide which of the given matrices must have real eigenvalues, without calculating eigenvalues or vectors.}\end{align*}\)

Possible Answers:

\(\displaystyle \begin{bmatrix}-8&-17&3&15&-12&4\\-17&-9&6&-4&5&2\\3&6&13&6&-19&0\\15&-4&6&14&-8&-17\\-12&5&-19&-8&-6&-6\\4&2&0&-17&-6&9\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}14&-1&2&15&10&-13\\-12&-5&-3&7&-13&11\\-2&-4&-7&17&8&-1\\-2&-4&-7&17&8&-1\\-12&-5&-3&7&-13&11\\14&-1&2&15&10&-13\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}10&5&19&19&5&10\\-19&13&-10&-10&13&-19\\-18&8&17&17&8&-18\\-15&16&9&9&16&-15\\-11&12&4&4&12&-11\\15&-12&-14&-14&-12&15\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-18&-17&9&34&33&11\\-10&-15&-12&17&-11&-29\\1&-4&22&-36&-21&9\\26&10&-28&2&32&5\\25&-2&-12&24&-9&30\\3&-20&16&-3&23&10\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix}-8&-17&3&15&-12&4\\-17&-9&6&-4&5&2\\3&6&13&6&-19&0\\15&-4&6&14&-8&-17\\-12&5&-19&-8&-6&-6\\4&2&0&-17&-6&9\end{bmatrix}\)

Explanation:

\(\displaystyle \begin{align*}&\text{Rather than actually calculating eigenvalues, it is worth noting that symmetric matrices}\\&\text{always have real eigenvalues. A symmetric matrix is one that is equal to its transpose, i.e:}\\&A=A^{T}\\&\text{Therefore, the matrix which must have real eigenvalues is:}\\&\begin{bmatrix}-8&-17&3&15&-12&4\\-17&-9&6&-4&5&2\\3&6&13&6&-19&0\\15&-4&6&14&-8&-17\\-12&5&-19&-8&-6&-6\\4&2&0&-17&-6&9\end{bmatrix}\end{align*}\)

Example Question #11 : Symmetric Matrices

\(\displaystyle \begin{align*}&\text{Decide which of the given matrices must have real eigenvalues, without calculating eigenvalues or vectors.}\end{align*}\)

Possible Answers:

\(\displaystyle \begin{bmatrix}-2&-6&-14&8&-7&-5\\-6&20&-14&9&0&13\\-14&-14&-15&-14&7&-1\\8&9&-14&13&3&-11\\-7&0&7&3&-18&5\\-5&13&-1&-11&5&-6\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-5&1&15&19&12&14\\-17&-12&20&3&2&-12\\12&5&-9&18&10&18\\12&5&-9&18&10&18\\-17&-12&20&3&2&-12\\-5&1&15&19&12&14\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}20&-8&-5&-5&-8&20\\19&15&-15&-15&15&19\\19&12&-17&-17&12&19\\-1&-7&-4&-4&-7&-1\\6&9&-17&-17&9&6\\3&-16&17&17&-16&3\end{bmatrix}\)

\(\displaystyle \begin{bmatrix}-15&-8&24&14&0&14\\-15&6&8&-2&25&-1\\16&1&-21&16&-7&18\\23&-11&7&-26&0&-15\\-7&16&1&9&7&-4\\22&-9&9&-7&-13&12\end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix}-2&-6&-14&8&-7&-5\\-6&20&-14&9&0&13\\-14&-14&-15&-14&7&-1\\8&9&-14&13&3&-11\\-7&0&7&3&-18&5\\-5&13&-1&-11&5&-6\end{bmatrix}\)

Explanation:

\(\displaystyle \begin{align*}&\text{Rather than actually calculating eigenvalues, it is worth noting that symmetric matrices}\\&\text{always have real eigenvalues. A symmetric matrix is one that is equal to its transpose, i.e:}\\&A=A^{T}\\&\text{Therefore, the matrix which must have real eigenvalues is:}\\&\begin{bmatrix}-2&-6&-14&8&-7&-5\\-6&20&-14&9&0&13\\-14&-14&-15&-14&7&-1\\8&9&-14&13&3&-11\\-7&0&7&3&-18&5\\-5&13&-1&-11&5&-6\end{bmatrix}\end{align*}\)

Example Question #11 : Symmetric Matrices

\(\displaystyle A = \begin{bmatrix} 1& -3 &4 \\ 3& 1& 5\\ -4&-5 & 1\end{bmatrix}\)

True or false: \(\displaystyle A\) is an example of a skew-symmetric matrix.

Possible Answers:

False

True

Correct answer:

False

Explanation:

A square matrix \(\displaystyle A\) is defined to be skew-symmetric if its transpose \(\displaystyle A^{T}\) - the matrix resulting from interchanging its rows and its columns - is equal to its additive inverse; that is, if

\(\displaystyle A^{T} = -A\).

Interchanging rows and columns, we see that if 

\(\displaystyle A = \begin{bmatrix} 1& -3 &4 \\ 3& 1& 5\\ -4&-5 & 1\end{bmatrix}\),

then 

\(\displaystyle A^{T} = \begin{bmatrix} 1& 3 &-4 \\ -3& 1&-5\\ 4&5 & 1 \end{bmatrix}\).

\(\displaystyle -A\) can be determined by changing each element in \(\displaystyle A\) to its additive inverse:

\(\displaystyle A = \begin{bmatrix} -1& 3 &-4 \\- 3&- 1& -5\\ 4& 5 &- 1\end{bmatrix}\)

\(\displaystyle A^{T} \ne -A\), since not every element in corresponding positions is equal; in particular, the three elements in the main diagonal differ. \(\displaystyle A\) is not a skew-symmetric matrix.

Example Question #11 : Symmetric Matrices

\(\displaystyle A = \begin{bmatrix} 0& -3 &4 \\ 3& 0& 5\\ -4&-5 & 0 \end{bmatrix}\)

True or false: \(\displaystyle A\) is an example of a skew-symmetric matrix.

Possible Answers:

True

False

Correct answer:

True

Explanation:

A square matrix \(\displaystyle A\) is defined to be skew-symmetric if its transpose \(\displaystyle A^{T}\) - the matrix resulting from interchanging its rows and its columns - is equal to its additive inverse; that is, if

\(\displaystyle A^{T} = -A\).

Interchanging rows and columns, we see that if 

\(\displaystyle A = \begin{bmatrix} 0& -3 &4 \\ 3& 0& 5\\ -4&-5 & 0 \end{bmatrix}\),

then 

\(\displaystyle A^{T} = \begin{bmatrix} 0& 3 &-4 \\ -3& 0&-5\\ 4&5 & 0 \end{bmatrix}\).

We see that each element of \(\displaystyle A^{T}\) is the additive inverse of the corresponding element in \(\displaystyle A\), so \(\displaystyle A^{T} = -A\), and \(\displaystyle A\) is skew-symmetric.

Example Question #153 : Linear Algebra

\(\displaystyle A\) is a three-by-three nonsingular skew-symmetric matrix 

Then which of the following must be equal to \(\displaystyle A^{T}A^{-1}\) ?

Possible Answers:

\(\displaystyle \begin{bmatrix} 0& 0& 1\\ 0&1&0 \\ 1&0 &0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0& 0& 0\\ 0&0&0 \\ 0&0 &0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 1& 0& 0\\ 0& 1 &0 \\ 0&0 & 1 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} 0& 0& -1\\ 0&-1&0 \\ -1&0 &0 \end{bmatrix}\)

\(\displaystyle \begin{bmatrix} -1& 0& 0\\ 0&-1 &0 \\ 0&0 &-1 \end{bmatrix}\)

Correct answer:

\(\displaystyle \begin{bmatrix} -1& 0& 0\\ 0&-1 &0 \\ 0&0 &-1 \end{bmatrix}\)

Explanation:

A square matrix \(\displaystyle A\) is defined to be skew-symmetric if its transpose \(\displaystyle A^{T}\) - the matrix resulting from interchanging its rows and its columns - is equal to its additive inverse; that is, if

\(\displaystyle A^{T} = -A\).

Therefore, by substitution, 

\(\displaystyle A^{T}A^{-1} = (-A)A^{-1}\)

\(\displaystyle A^{T}A^{-1} = (-1 A)A^{-1}\)

\(\displaystyle A^{T}A^{-1} = -1(AA^{-1})\)

\(\displaystyle A^{T}A^{-1} = -1I\)

\(\displaystyle A^{T}A^{-1}\) must be equal to the opposite of the three-by-three identity matrix, which is \(\displaystyle \begin{bmatrix} -1& 0& 0\\ 0&-1 &0 \\ 0&0 &-1 \end{bmatrix}\).

Learning Tools by Varsity Tutors