ISEE Lower Level Quantitative : How to find the solution to an equation

Study concepts, example questions & explanations for ISEE Lower Level Quantitative

varsity tutors app store varsity tutors android store

Example Questions

Example Question #41 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle 5x-7=23?

Possible Answers:

\displaystyle \frac{16}{5}

\displaystyle 4

\displaystyle 6

\displaystyle 5

Correct answer:

\displaystyle 6

Explanation:

In order to solve for \displaystyle x, you will need to get it alone to one side.

\displaystyle 5x-7=23

Start by adding \displaystyle 7 to both sides of the equation.

\displaystyle 5x=30

Divide both sides by \displaystyle 5.

\displaystyle x=6

Example Question #42 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle 10x-8=22?

Possible Answers:

\displaystyle 3

\displaystyle \frac{5}{2}

\displaystyle 6

\displaystyle 4

Correct answer:

\displaystyle 3

Explanation:

To solve for \displaystyle x, you will need to get it on its own on one side.

\displaystyle 10x-8=22

Start by adding \displaystyle 8 to both sides.

\displaystyle 10x=30

Divide both sides by \displaystyle 10.

\displaystyle x=3

Example Question #43 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle 11x+10=32?

Possible Answers:

\displaystyle -2

\displaystyle 2

\displaystyle 3

\displaystyle 1

Correct answer:

\displaystyle 2

Explanation:

To solve for \displaystyle x, you will need to get it on its own on one side of the equation.

\displaystyle 11x+10=32

Start by subtracting both sides by \displaystyle 10.

\displaystyle 11x=22

Divide both sides by \displaystyle 11.

\displaystyle x=2

Example Question #44 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle 4x-10=66?

Possible Answers:

\displaystyle 19

\displaystyle 16

\displaystyle 17

\displaystyle 15

Correct answer:

\displaystyle 19

Explanation:

To solve for \displaystyle x, you will need to get \displaystyle x on one side of the equation on its own.

\displaystyle 4x-10=66

Start by adding \displaystyle 10 to both sides.

\displaystyle 4x=76

Next, divide both sides by \displaystyle 4.

\displaystyle x=19

Example Question #45 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle \frac{x}{4}-10=2?

Possible Answers:

\displaystyle 3

\displaystyle 45

\displaystyle 21

\displaystyle 48

Correct answer:

\displaystyle 48

Explanation:

In order to solve for \displaystyle x, you must isolate it on one side of the equation.

\displaystyle \frac{x}{4}-10=2

Start by adding \displaystyle 10 to both sides.

\displaystyle \frac{x}{4}=12

Multiply both sides of the equation by \displaystyle 4.

\displaystyle x=48

Example Question #46 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle 9x-14=40?

Possible Answers:

\displaystyle 3

\displaystyle 12

\displaystyle 6

\displaystyle 9

Correct answer:

\displaystyle 6

Explanation:

In order to solve for \displaystyle x, you will need to isolate it on one side of the equation.

\displaystyle 9x-14=40

Start by adding \displaystyle 14 to both sides.

\displaystyle 9x=54

Divide both sides by \displaystyle 9.

\displaystyle x=6

Example Question #47 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle \frac{x}{5}-2=2?

Possible Answers:

\displaystyle 25

\displaystyle 20

\displaystyle 15

\displaystyle 10

Correct answer:

\displaystyle 20

Explanation:

In order to solve for \displaystyle x, you will need to isolate it on its own on one side of the equation.

\displaystyle \frac{x}{5}-2=2

Start by adding \displaystyle 2 to both sides.

\displaystyle \frac{x}{5}=4

Multiply both sides by \displaystyle 5.

\displaystyle x=20

Example Question #48 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle \frac{1}{3}x-10=1?

Possible Answers:

\displaystyle 33

\displaystyle 24

\displaystyle 27

\displaystyle 30

Correct answer:

\displaystyle 33

Explanation:

In order to solve for \displaystyle x, you will need to isolate it on one side of the equation.

\displaystyle \frac{1}{3}x-10=1

Start by adding \displaystyle 10 to both sides.

\displaystyle \frac{1}{3}x=11

Multiply both sides of the equation by \displaystyle 3.

\displaystyle x=33

Example Question #49 : How To Find The Solution To An Equation

What is the value of \displaystyle x in the equation \displaystyle \frac{1}{7}x+1=8?

Possible Answers:

\displaystyle 56

\displaystyle 70

\displaystyle 63

\displaystyle 49

Correct answer:

\displaystyle 49

Explanation:

In order to solve for \displaystyle x, you will need to isolate it on one side of the equation.

\displaystyle \frac{1}{7}x+1=8

Start by subtracting \displaystyle 1 from both sides of the equation.

\displaystyle \frac{1}{7}x=7

Multiply both sides by \displaystyle 7.

\displaystyle x=49

Example Question #50 : How To Find The Solution To An Equation

Solve for \displaystyle x.

\displaystyle 5 + x=12

Possible Answers:

\displaystyle x=8

\displaystyle x=10

\displaystyle x=12

\displaystyle x=1

\displaystyle x=7

Correct answer:

\displaystyle x=7

Explanation:

To solve the problem, we must get \displaystyle x alone.

So we must subtract \displaystyle 5 from each side.

This leaves us with 

\displaystyle 12-5=7.

Therefore, 

\displaystyle x=7.

Learning Tools by Varsity Tutors