High School Math : High School Math

Study concepts, example questions & explanations for High School Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #282 : Plane Geometry

Sat_math_picture

If the area of the circle touching the square in the picture above is , what is the closest value to the area of the square?

Possible Answers:

Correct answer:

Explanation:

Obtain the radius of the circle from the area.

Split the square up into 4 triangles by connecting opposite corners. These triangles will have a right angle at the center of the square, formed by two radii of the circle, and two 45-degree angles at the square's corners. Because you have a 45-45-90 triangle, you can calculate the sides of the triangles to be , , and . The radii of the circle (from the center to the corners of the square) will be 9. The hypotenuse (side of the square) must be .

The area of the square is then .

Example Question #7 : Diameter

Two legs of a right triangle measure 3 and 4, respectively. What is the area of the circle that circumscribes the triangle? 

Possible Answers:

Correct answer:

Explanation:

For the circle to contain all 3 vertices, the hypotenuse must be the diameter of the circle. The hypotenuse, and therefore the diameter, is 5, since this must be a 3-4-5 right triangle.

The equation for the area of a circle is A = πr2.

Example Question #1 : How To Find The Ratio Of Diameter And Circumference

What is the ratio of the diameter of a circle to the circumference of the same circle?

Possible Answers:

Correct answer:

Explanation:

To find the ratio we must know the equation for the circumference of a circle. In this equation, is the circumference and is the diameter.

Once we know the equation, we can solve for the ratio of the diameter to circumference by solving the equation for . We do this by dividing both sides by .

Then we divide both sides by the circumference.

We now know that the ratio of the diameter to circumference is equal to .

Example Question #2 : How To Find The Ratio Of Diameter And Circumference

What is the ratio of the diameter and circumference of a circle?

 

Possible Answers:

Correct answer:

Explanation:

To find the ratio we must know the equation for the circumference of a circle is

Once we know the equation we can solve for the ratio of the diameter to circumference by solving the equation for 

we divide both sides by the circumference giving us 

We now know that the ratio of the diameter to circumference is equal to .

Example Question #1 : How To Find The Ratio Of Diameter And Circumference

Let  represent the area of a circle and  represent its circumference. Which of the following equations expresses  in terms of

Possible Answers:


Correct answer:

Explanation:

The formula for the area of a circle is , and the formula for circumference is . If we solve for C in terms of r, we get
.

We can then substitute this value of r into the formula for the area:

 

Example Question #1 : How To Find The Ratio Of Diameter And Circumference

What is the ratio of any circle's circumference to its radius?

Possible Answers:

Undefined.

 

Correct answer:

 

Explanation:

The circumference of any circle is 

So the ratio of its circumference to its radius r, is

 

Example Question #1 : How To Find The Angle Of Clock Hands

Find the angle between the minute and hour hand at 8:20 PM.  

Possible Answers:

Correct answer:

Explanation:

The distance between each notch on the clock is 6 degrees because there are 360 degrees on the clock, and there are 60 notches total. The minute hand is at notch #20, and so it is 120 degrees from the top. The hour hand is a little past notch #40 because the time is a little past hour 8. Thus, the hour hand is a little past 240 degrees from the top, going clockwise ( degrees).

In each hour, the hour hand goes 5 notches, or 30 degrees.  Because it is now 20 minutes past the hour, a third of an hour has passed.  One third of 30 degrees is 10 degrees.  Thus, the hour hand is 10 degrees past notch #40.  The hour hand is 250 degrees from the top, going clockwise.  The angle between the two hands is thus 130 degrees.  

Example Question #1 : How To Find The Angle Of Clock Hands

When making a pie chart, how many degrees should be allotted for  percent?

Possible Answers:

Correct answer:

Explanation:

This is a proportion problem

  so there are  in  percent of a circle

Example Question #2 : How To Find The Angle Of Clock Hands

If it is 2:00 PM, what is the measure of the angle between the minute and hour hands of the clock?

Possible Answers:

45 degrees

90 degrees

120 degrees

60 degrees

30 degrees

Correct answer:

60 degrees

Explanation:

First note that a clock is a circle made of 360 degrees, and that each number represents an angle and the separation between them is 360/12 = 30. And at 2:00, the minute hand is on the 12 and the hour hand is on the 2.  The correct answer is 2 * 30 = 60 degrees.

Example Question #1 : How To Find The Angle Of Clock Hands

A clock currently reads 2:00. What is the size of the angle formed between the hour and minute hands?

Possible Answers:

Correct answer:

Explanation:

The interior angle of a sector is equal the the angle of the sector. If the entire circumference was the sector, it would equal . Additionally, if it were 12:00, the angle would be equal to . We can solve the problem by setting up a proportion. 2:00 will be two-twelfths of the circle past the 12:00 mark, and will be at an angle of .

Cross multiply and solve for .

Learning Tools by Varsity Tutors