All High School Math Resources
Example Questions
Example Question #3 : Derivative Defined As The Limit Of The Difference Quotient
What is the derivative of ?
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
We're going to treat as since anything to the zero power is one.
For this problem that would look like this:
Notice that since anything times zero is zero.
Example Question #21 : Derivatives
What is the derivative of ?
To find the first derivative, we can use the power rule. To do that, we lower the exponent on the variables by one and multiply by the original exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Example Question #15 : Finding Derivatives
To find the derivative of the problem, we can use the power rule. The power rule says to multiply the coefficient of the variable by the exponent of the variable and then lower the exponent value by one.
To make that work, we're going to treat as , since anything to the zero power is one.
This means that is the same as .
Now use the power rule:
Anything times zero is zero.
Example Question #16 : Finding Derivatives
What is the first derivative of ?
To find the derivative of , we can use the power rule.
The power rule states that we multiply each variable by its current exponent and then lower the exponent of each variable by one.
Since , we're going to treat as .
Anything times zero is zero, so our final term , regardless of the power of the exponent.
Simplify what we have.
Our final solution, then, is .
Example Question #21 : Finding Derivatives
If , what is ?
There is no for this equation.
For this problem, we can use the power rule. The power rule states that we multiply each variable by its current exponent and then lower that exponent by one.
Simplify.
Anything to the zero power is one, so .
Therefore, .
Example Question #21 : Finding Derivatives
Find the derivative of the following function:
We use the power rule on each term of the function.
The first term
becomes
.
The second term
becomes
.
The final term, 7, is a constant, so its derivative is simply zero.
Example Question #31 : Derivatives
What is the second derivative of ?
To take the second derivative, we need to start with the first derivative.
To take the derivative of this equation, we can use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent.
Simplify.
Remember that anything to the zero power is equal to one.
Now we repeat the process, but using as our expression.
We're going to treat as being since anything to the zero power is equal to one.
Notice that since anything times zero is zero.
Example Question #32 : Derivatives
What is the second derivative of ?
Undefined
To take the second derivative, we need to start with the first derivative.
To take the derivative of this equation, we can use the power rule. The power rule says that we lower the exponent of each variable by one and multiply that number by the original exponent.
We are going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Simplify.
As stated before, anything to the zero power is one.
Now we repeat the process but use , or , as our expression.
As stated before, anything times zero is zero.
Therefore, .
Example Question #33 : Derivatives
What is the second derivative of ?
To find the second derivative, first we need to start with the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
Anything to the zero power is one.
Now we repeat the process using as our expression.
We're going to treat as .
Notice that since anything times zero is zero.
As stated before, anything to the zero power is one.
Example Question #34 : Derivatives
What is the second derivative of ?
To find the second derivative, we start by taking the first derivative.
To find the first derivative, we can use the power rule. We lower the exponent on all the variables by one and multiply by the original variable.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Now we repeat the process, but using as our expression.