All High School Math Resources
Example Questions
Example Question #1 : How To Find The Length Of The Diagonal Of A Hexagon
How many diagonals are there in a regular hexagon?
18
9
3
10
6
9
A diagonal connects two non-consecutive vertices of a polygon. A hexagon has six sides. There are 3 diagonals from a single vertex, and there are 6 vertices on a hexagon, which suggests there would be 18 diagonals in a hexagon. However, we must divide by two as half of the diagonals are common to the same vertices. Thus there are 9 unique diagonals in a hexagon. The formula for the number of diagonals of a polygon is:
where n = the number of sides in the polygon.
Thus a pentagon thas 5 diagonals. An octagon has 20 diagonals.
Example Question #1 : How To Find An Angle In A Hexagon
190
180
200
170
210
Example Question #2 : Hexagons
If a triangle has 180 degrees, what is the sum of the interior angles of a regular octagon?
The sum of the interior angles of a polygon is given by where = number of sides of the polygon. An octagon has 8 sides, so the formula becomes
Example Question #1 : How To Find An Angle In A Hexagon
What is the measure of an interior angle of a regular hexagon?
The measure of an internal angle of an regular polygon can be determined using the following equation, where equals the number of sides:
Example Question #1 : How To Find The Area Of A Hexagon
Calculate the approximate area a regular hexagon with the following side length:
Cannot be determined
How do you find the area of a hexagon?
There are several ways to find the area of a hexagon.
- In a regular hexagon, split the figure into triangles.
- Find the area of one triangle.
- Multiply this value by six.
Alternatively, the area can be found by calculating one-half of the side length times the apothem.
Regular hexagons:
Regular hexagons are interesting polygons. Hexagons are six sided figures and possess the following shape:
In a regular hexagon, all sides equal the same length and all interior angles have the same measure; therefore, we can write the following expression.
One of the easiest methods that can be used to find the area of a polygon is to split the figure into triangles. Let's start by splitting the hexagon into six triangles.
In this figure, the center point, , is equidistant from all of the vertices. As a result, the six dotted lines within the hexagon are the same length. Likewise, all of the triangles within the hexagon are congruent by the side-side-side rule: each of the triangle's share two sides inside the hexagon as well as a base side that makes up the perimeter of the hexagon. In a similar fashion, each of the triangles have the same angles. There are in a circle and the hexagon in our image has separated it into six equal parts; therefore, we can write the following:
We also know the following:
Now, let's look at each of the triangles in the hexagon. We know that each triangle has two two sides that are equal; therefore, each of the base angles of each triangle must be the same. We know that a triangle has and we can solve for the two base angles of each triangle using this information.
Each angle in the triangle equals . We now know that all the triangles are congruent and equilateral: each triangle has three equal side lengths and three equal angles. Now, we can use this vital information to solve for the hexagon's area. If we find the area of one of the triangles, then we can multiply it by six in order to calculate the area of the entire figure. Let's start by analyzing . If we draw, an altitude through the triangle, then we find that we create two triangles.
Let's solve for the length of this triangle. Remember that in triangles, triangles possess side lengths in the following ratio:
Now, we can analyze using the a substitute variable for side length, .
We know the measure of both the base and height of and we can solve for its area.
Now, we need to multiply this by six in order to find the area of the entire hexagon.
We have solved for the area of a regular hexagon with side length, . If we know the side length of a regular hexagon, then we can solve for the area.
If we are not given a regular hexagon, then we an solve for the area of the hexagon by using the side length(i.e. ) and apothem (i.e. ), which is the length of a line drawn from the center of the polygon to the right angle of any side. This is denoted by the variable in the following figure:
Alternative method:
If we are given the variables and , then we can solve for the area of the hexagon through the following formula:
In this equation, is the area, is the perimeter, and is the apothem. We must calculate the perimeter using the side length and the equation , where is the side length.
Solution:
In the given problem we know that the side length of a regular hexagon is the following:
Let's substitute this value into the area formula for a regular hexagon and solve.
Simplify.
Round the answer to the nearest whole number.
Example Question #51 : Plane Geometry
A single hexagonal cell of a honeycomb is two centimeters in diameter.
What’s the area of the cell to the nearest tenth of a centimeter?
Cannot be determined
How do you find the area of a hexagon?
There are several ways to find the area of a hexagon.
- In a regular hexagon, split the figure into triangles.
- Find the area of one triangle.
- Multiply this value by six.
Alternatively, the area can be found by calculating one-half of the side length times the apothem.
Regular hexagons:
Regular hexagons are interesting polygons. Hexagons are six sided figures and possess the following shape:
In a regular hexagon, all sides equal the same length and all interior angles have the same measure; therefore, we can write the following expression.
One of the easiest methods that can be used to find the area of a polygon is to split the figure into triangles. Let's start by splitting the hexagon into six triangles.
In this figure, the center point, , is equidistant from all of the vertices. As a result, the six dotted lines within the hexagon are the same length. Likewise, all of the triangles within the hexagon are congruent by the side-side-side rule: each of the triangle's share two sides inside the hexagon as well as a base side that makes up the perimeter of the hexagon. In a similar fashion, each of the triangles have the same angles. There are in a circle and the hexagon in our image has separated it into six equal parts; therefore, we can write the following:
We also know the following:
Now, let's look at each of the triangles in the hexagon. We know that each triangle has two two sides that are equal; therefore, each of the base angles of each triangle must be the same. We know that a triangle has and we can solve for the two base angles of each triangle using this information.
Each angle in the triangle equals . We now know that all the triangles are congruent and equilateral: each triangle has three equal side lengths and three equal angles. Now, we can use this vital information to solve for the hexagon's area. If we find the area of one of the triangles, then we can multiply it by six in order to calculate the area of the entire figure. Let's start by analyzing . If we draw, an altitude through the triangle, then we find that we create two triangles.
Let's solve for the length of this triangle. Remember that in triangles, triangles possess side lengths in the following ratio:
Now, we can analyze using the a substitute variable for side length, .
We know the measure of both the base and height of and we can solve for its area.
Now, we need to multiply this by six in order to find the area of the entire hexagon.
We have solved for the area of a regular hexagon with side length, . If we know the side length of a regular hexagon, then we can solve for the area.
If we are not given a regular hexagon, then we an solve for the area of the hexagon by using the side length(i.e. ) and apothem (i.e. ), which is the length of a line drawn from the center of the polygon to the right angle of any side. This is denoted by the variable in the following figure:
Alternative method:
If we are given the variables and , then we can solve for the area of the hexagon through the following formula:
In this equation, is the area, is the perimeter, and is the apothem. We must calculate the perimeter using the side length and the equation , where is the side length.
Solution:
In the problem we are told that the honeycomb is two centimeters in diameter. In order to solve the problem we need to divide the diameter by two. This is because the radius of this diameter equals the interior side length of the equilateral triangles in the honeycomb. Lets find the side length of the regular hexagon/honeycomb.
Substitute and solve.
We know the following information.
As a result, we can write the following:
Let's substitute this value into the area formula for a regular hexagon and solve.
Simplify.
Solve.
Round to the nearest tenth of a centimeter.
Example Question #1 : How To Find The Area Of A Hexagon
What is the area of a regular hexagon with an apothem of and a side length of ?
How do you find the area of a hexagon?
There are several ways to find the area of a hexagon.
- In a regular hexagon, split the figure into triangles.
- Find the area of one triangle.
- Multiply this value by six.
Alternatively, the area can be found by calculating one-half of the side length times the apothem.
Regular hexagons:
Regular hexagons are interesting polygons. Hexagons are six sided figures and possess the following shape:
In a regular hexagon, all sides equal the same length and all interior angles have the same measure; therefore, we can write the following expression.
One of the easiest methods that can be used to find the area of a polygon is to split the figure into triangles. Let's start by splitting the hexagon into six triangles.
In this figure, the center point, , is equidistant from all of the vertices. As a result, the six dotted lines within the hexagon are the same length. Likewise, all of the triangles within the hexagon are congruent by the side-side-side rule: each of the triangle's share two sides inside the hexagon as well as a base side that makes up the perimeter of the hexagon. In a similar fashion, each of the triangles have the same angles. There are in a circle and the hexagon in our image has separated it into six equal parts; therefore, we can write the following:
We also know the following:
Now, let's look at each of the triangles in the hexagon. We know that each triangle has two two sides that are equal; therefore, each of the base angles of each triangle must be the same. We know that a triangle has and we can solve for the two base angles of each triangle using this information.
Each angle in the triangle equals . We now know that all the triangles are congruent and equilateral: each triangle has three equal side lengths and three equal angles. Now, we can use this vital information to solve for the hexagon's area. If we find the area of one of the triangles, then we can multiply it by six in order to calculate the area of the entire figure. Let's start by analyzing . If we draw, an altitude through the triangle, then we find that we create two triangles.
Let's solve for the length of this triangle. Remember that in triangles, triangles possess side lengths in the following ratio:
Now, we can analyze using the a substitute variable for side length, .
We know the measure of both the base and height of and we can solve for its area.
Now, we need to multiply this by six in order to find the area of the entire hexagon.
We have solved for the area of a regular hexagon with side length, . If we know the side length of a regular hexagon, then we can solve for the area.
If we are not given a regular hexagon, then we an solve for the area of the hexagon by using the side length(i.e. ) and apothem (i.e. ), which is the length of a line drawn from the center of the polygon to the right angle of any side. This is denoted by the variable in the following figure:
Alternative method:
If we are given the variables and , then we can solve for the area of the hexagon through the following formula:
In this equation, is the area, is the perimeter, and is the apothem. We must calculate the perimeter using the side length and the equation , where is the side length.
Solution:
In a hexagon the number of sides is and in this example the side length is .
The perimeter is .
Then we plug in the numbers for the apothem and perimeter into the original equation.
The area is .
Example Question #3 : How To Find The Area Of A Hexagon
This provided figure is a regular hexagon with a side length with the following measurement:
Calculate the area of the regular hexagon.
How do you find the area of a hexagon?
There are several ways to find the area of a hexagon.
- In a regular hexagon, split the figure into triangles.
- Find the area of one triangle.
- Multiply this value by six.
Alternatively, the area can be found by calculating one-half of the side length times the apothem.
Regular hexagons:
Regular hexagons are interesting polygons. Hexagons are six sided figures and possess the following shape:
In a regular hexagon, all sides equal the same length and all interior angles have the same measure; therefore, we can write the following expression.
One of the easiest methods that can be used to find the area of a polygon is to split the figure into triangles. Let's start by splitting the hexagon into six triangles.
In this figure, the center point, , is equidistant from all of the vertices. As a result, the six dotted lines within the hexagon are the same length. Likewise, all of the triangles within the hexagon are congruent by the side-side-side rule: each of the triangle's share two sides inside the hexagon as well as a base side that makes up the perimeter of the hexagon. In a similar fashion, each of the triangles have the same angles. There are in a circle and the hexagon in our image has separated it into six equal parts; therefore, we can write the following:
We also know the following:
Now, let's look at each of the triangles in the hexagon. We know that each triangle has two two sides that are equal; therefore, each of the base angles of each triangle must be the same. We know that a triangle has and we can solve for the two base angles of each triangle using this information.
Each angle in the triangle equals . We now know that all the triangles are congruent and equilateral: each triangle has three equal side lengths and three equal angles. Now, we can use this vital information to solve for the hexagon's area. If we find the area of one of the triangles, then we can multiply it by six in order to calculate the area of the entire figure. Let's start by analyzing . If we draw, an altitude through the triangle, then we find that we create two triangles.
Let's solve for the length of this triangle. Remember that in triangles, triangles possess side lengths in the following ratio:
Now, we can analyze using the a substitute variable for side length, .
We know the measure of both the base and height of and we can solve for its area.
Now, we need to multiply this by six in order to find the area of the entire hexagon.
We have solved for the area of a regular hexagon with side length, . If we know the side length of a regular hexagon, then we can solve for the area.
If we are not given a regular hexagon, then we an solve for the area of the hexagon by using the side length(i.e. ) and apothem (i.e. ), which is the length of a line drawn from the center of the polygon to the right angle of any side. This is denoted by the variable in the following figure:
Alternative method:
If we are given the variables and , then we can solve for the area of the hexagon through the following formula:
In this equation, is the area, is the perimeter, and is the apothem. We must calculate the perimeter using the side length and the equation , where is the side length.
Solution:
In the given problem we know that the side length of a regular hexagon is the following:
Let's substitute this value into the area formula for a regular hexagon and solve.
Simplify.
Example Question #1 : Solid Geometry
What is the volume of a cone with a height of and a base with a radius of ?
To find the volume of a cone we must use the equation . In this formula, is the area of the circular base of the cone, and is the height of the cone.
We must first solve for the area of the base using .
The equation for the area of a circle is . Using this, we can adjust our formula and plug in the value of our radius.
Now we can plug in our given height, .
Multiply everything out to solve for the volume.
The volume of the cone is .
Example Question #2 : Solid Geometry
What is the equation of a circle with a center of (5,15) and a radius of 7?
To find the equation of a circle we must first know the standard form of the equation of a circle which is
The letters and represent the -value and -value of the center of the circle respectively.
In this case is 5 and k is 15 so plugging the values into the equation yields
We then plug the radius into the equation to get
Square it to yield
The equation with a center of (5,15) and a radius of 7 is .