Calculus 3 : Vectors and Vector Operations

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #76 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} -6\\8 \\3 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix}-6 \\-2 \\7 \end{bmatrix}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 56

\displaystyle 15

\displaystyle 61

\displaystyle 41

\displaystyle -5

Correct answer:

\displaystyle 41

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=\begin{bmatrix} a_1\\a_2 \\ ...\\ a_n \end{bmatrix}

\displaystyle \overrightarrow{b}=\begin{bmatrix}b_1 \\b_2 \\...\\b_n \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

\displaystyle \overrightarrow{a}=\begin{bmatrix} -6\\8 \\3 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix}-6 \\-2 \\7 \end{bmatrix}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=36-16+21=41

Example Question #77 : Dot Product

Given the following two vectors, \displaystyle \overrightarrow{a}=\begin{bmatrix} 4\\ -9\\-9 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} -7\\ 7\\9 \end{bmatrix}, calculate the dot product between them,\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}.

Possible Answers:

\displaystyle 108

\displaystyle 214

\displaystyle -126

\displaystyle -144

\displaystyle -172

Correct answer:

\displaystyle -172

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

\displaystyle \overrightarrow{a}=\begin{bmatrix} a_1\\a_2 \\ ...\\ a_n \end{bmatrix}

\displaystyle \overrightarrow{b}=\begin{bmatrix}b_1 \\b_2 \\...\\b_n \end{bmatrix}

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3+...+a_nb_n

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

\displaystyle \overrightarrow{a}=\begin{bmatrix} 4\\ -9\\-9 \end{bmatrix} and \displaystyle \overrightarrow{b}=\begin{bmatrix} -7\\ 7\\9 \end{bmatrix}

The dot product can be found following the example above:

\displaystyle \overrightarrow{a}\cdot\overrightarrow{b}=-28-63-81=-172

Example Question #391 : Vectors And Vector Operations

Evaluate the dot product \displaystyle < t,2t,t^3> \cdot < \sin(t),\cos(t),\ln(t)>.

Possible Answers:

\displaystyle < t\sin(t),2t\cos(t),t^3\ln(t)>

\displaystyle < t\cos(t),-2t\sin(t),t^2>

None of the other answers

\displaystyle < 0,0,0>

Correct answer:

None of the other answers

Explanation:

The correct answer is \displaystyle t\sin(t)+2t\cos(t)+t^3\ln(t).

 

To compute the dot product, we take the corresponding components of each vector, and multiply them together. In this case, we have \displaystyle (t)(\sin(t))+(2t)(\cos(t))+(t^3)(\ln(t))=t\sin(t)+2t\cos(t)+t^3\ln(t).

Note that taking the dot product of any two vectors will always return a scalar-valued expression (or just a simple scalar). There should be no vector brackets in your answer.

Example Question #392 : Vectors And Vector Operations

Find the dot product of the two vectors:

\displaystyle \mathbf{u}=\left [ \frac{2\sqrt{2}}{3}, 7, 4\sqrt{3}\right ], \mathbf{v}=\left [ 6\sqrt{2}, 0, \frac{5}{2} \right ]

Possible Answers:

23.58

19.07

25.32

22.14

20.72

Correct answer:

25.32

Explanation:

The dot product of two vectors is defined as:

\displaystyle \mathbf{u} \cdot\mathbf{v}=u_xv_x+u_yv_y+u_zv_z

For the given vectors, this is:

\displaystyle \mathbf{u} \cdot\mathbf{v}=(\frac{2\sqrt{2}}{ {3}})(6\sqrt{2})+(7)(0)+(4\sqrt{3})(\frac{5}{2})

\displaystyle \mathbf{u} \cdot\mathbf{v}=8+0+10\sqrt{3}=25.32

Example Question #393 : Vectors And Vector Operations

Find the magnitude of the following vector:

\displaystyle \mathbf{u}=6\mathbf{i}+3\mathbf{j}-4\mathbf{k}

Possible Answers:

\displaystyle \sqrt{29}

\displaystyle \sqrt{13}

\displaystyle \sqrt{5}

\displaystyle \sqrt{61}

\displaystyle \sqrt{70}

Correct answer:

\displaystyle \sqrt{61}

Explanation:

The magnitude of a vector is given by:

\displaystyle |\mathbf{u}|=\sqrt{u_x^2+u_y^2+u_z^2}=\sqrt{6^2+3^2+(-4)^2}=\sqrt{36+9+16}=\sqrt{61}

Example Question #81 : Dot Product

Find the dot product:  \displaystyle \left \langle -2,9\right \rangle\cdot \left \langle -3,7\right \rangle  

Possible Answers:

\displaystyle \left \langle 6,63\right \rangle

\displaystyle 11

\displaystyle \left \langle -5,16\right \rangle

\displaystyle 10

\displaystyle 69

Correct answer:

\displaystyle 69

Explanation:

Write the dot product formula.

\displaystyle a\cdot b = a_1b_1+a_2b_2

Substitute the values of the vectors and solve.  The dot product will result in a number, not a vector.

\displaystyle (-2)(-3) + (9)(7) = 6 +63 =69

The dot product is:  \displaystyle 69

Example Question #82 : Dot Product

Find the length \displaystyle \small ||v|| of the vector \displaystyle \small v=(1,\sqrt{3})

Possible Answers:

\displaystyle \small \small \small ||v||=\sqrt{1+\sqrt{3}}

\displaystyle \small \small \small ||v||=4

\displaystyle \small \small \small ||v||=1+\sqrt{3}

\displaystyle \small \small ||v||=2

Correct answer:

\displaystyle \small \small ||v||=2

Explanation:

To find the length \displaystyle \small ||v|| of the vector \displaystyle \small v=(1,\sqrt{3}), we take the square root of the dot product \displaystyle \small v\cdot v:

\displaystyle \small \small ||v||=\sqrt{v\cdot v}=\sqrt{1^2+\sqrt{3}^2}=\sqrt{4}=2

Example Question #396 : Vectors And Vector Operations

Find the length \displaystyle \small ||v|| of the vector \displaystyle \small \small v=(15,12).

Possible Answers:

\displaystyle \small \small \small ||v||=\sqrt{370}

\displaystyle \small \small \small ||v||=\sqrt{369}

\displaystyle \small \small \small ||v||=27

\displaystyle \small \small \small ||v||=369

Correct answer:

\displaystyle \small \small \small ||v||=\sqrt{369}

Explanation:

To find the length \displaystyle \small ||v|| of the vector \displaystyle \small \small v=(15,12), we take the square root of the dot product \displaystyle \small v\cdot v:

\displaystyle \small \small \small ||v||=\sqrt{v\cdot v}=\sqrt{15^2+12^2}=\sqrt{225+144}=\sqrt{369}

Example Question #397 : Vectors And Vector Operations

Find the length \displaystyle \small ||v|| of the vector \displaystyle \small \small \small v=(5,5).

Possible Answers:

\displaystyle \small \small \small ||v||=10

\displaystyle \small \small \small ||v||=2\sqrt{5}

\displaystyle \small \small ||v||=5\sqrt{2}

\displaystyle \small \small \small ||v||=50

Correct answer:

\displaystyle \small \small ||v||=5\sqrt{2}

Explanation:

To find the length \displaystyle \small ||v|| of the vector \displaystyle \small \small \small v=(5,5), we take the square root of the dot product \displaystyle \small v\cdot v:

\displaystyle \small \small \small \small \small ||v||=\sqrt{v\cdot v}=\sqrt{5^2+5^2}=\sqrt{25+25}=\sqrt{25\cdot 2}=5\sqrt{2}

Example Question #398 : Vectors And Vector Operations

Find the length \displaystyle \small ||v|| of the vector \displaystyle \small \small \small \small v=(3,-1).

Possible Answers:

\displaystyle \small \small \small ||v||=4

\displaystyle \small \small \small ||v||=2

\displaystyle \small \small \small ||v||=10

\displaystyle \small \small ||v||=\sqrt{10}

Correct answer:

\displaystyle \small \small ||v||=\sqrt{10}

Explanation:

To find the length \displaystyle \small ||v|| of the vector \displaystyle \small \small \small \small v=(3,-1), we take the square root of the dot product \displaystyle \small v\cdot v:

\displaystyle \small \small \small \small \small \small ||v||=\sqrt{v\cdot v}=\sqrt{3^2+(-1)^2}=\sqrt{9+1}=\sqrt{10}

Learning Tools by Varsity Tutors