Calculus 3 : Vectors and Vector Operations

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #46 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #47 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #48 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #49 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #50 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #361 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Since the dot product is zero, it can be inferred that these two vectors are perpendicular!

Example Question #362 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #363 : Vectors And Vector Operations

Find the dot product between the two vectors and 

Possible Answers:

None of the other answers

Correct answer:

Explanation:

To take the dot product of two vectors, we multiply their common components, and then add.

 .
 

 

Example Question #364 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Example Question #365 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors  and 

The dot product can be found following the example above:

Learning Tools by Varsity Tutors