Calculus 3 : Vectors and Vector Operations

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #381 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors 

 and 

The dot product can be found following the example above:

Example Question #382 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #383 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #384 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #385 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #386 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #387 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #388 : Vectors And Vector Operations

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #74 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Example Question #71 : Dot Product

Given the following two vectors,  and , calculate the dot product between them,.

Possible Answers:

Correct answer:

Explanation:

The dot product of a paired set of vectors can be found by summing up the individual products of the multiplications between matched directional vectors.

Note that the dot product is a scalar value rather than a vector; there's no directional term.

Now considering our problem, we're given the vectors

 and 

The dot product can be found following the example above:

Learning Tools by Varsity Tutors