Calculus 3 : Applications of Partial Derivatives

Study concepts, example questions & explanations for Calculus 3

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1603 : Calculus 3

Find \displaystyle \bigtriangledown f of the following function:

\displaystyle f(x, y, z)=xz^3\cos(y)

Possible Answers:

\displaystyle \left \langle z^3\cos(y), xz^3\sin(y), 3xz^2\cos(y)\right \rangle

\displaystyle \left \langle z^3\cos(y), -xz^3\sin(y), 3xz^2\cos(y)\right \rangle

\displaystyle \left \langle z^3\cos(y), -xz^3\sin(y), 3xz^2\sin(y)\right \rangle

\displaystyle \left \langle 0, -\sin(y), z^2\right \rangle

Correct answer:

\displaystyle \left \langle z^3\cos(y), -xz^3\sin(y), 3xz^2\cos(y)\right \rangle

Explanation:

The gradient of the function is 

\displaystyle \bigtriangledown f= \left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=z^3\cos(y)

\displaystyle f_y=-xz^3\sin(y)

\displaystyle f_z=3xz^2\cos(y)

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \cos(x)=-\sin(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

Example Question #1601 : Calculus 3

Find \displaystyle \bigtriangledown f for the following function:

\displaystyle f(x, y, z)=4e^{xy}+\ln(z)

Possible Answers:

\displaystyle \left \langle 4ye^{xy}, 4xe^{xy}, \frac{1}{z}\right \rangle

\displaystyle \left \langle 4ye^{xy}, 4xe^{xy}, -\frac{1}{z}\right \rangle

\displaystyle \left \langle ye^{xy}, xe^{xy}, \frac{1}{z}\right \rangle

\displaystyle \left \langle 4xe^{xy}, 4ye^{xy}, \frac{1}{z}\right \rangle

Correct answer:

\displaystyle \left \langle 4ye^{xy}, 4xe^{xy}, \frac{1}{z}\right \rangle

Explanation:

The gradient of a function is given by

\displaystyle \bigtriangledown f=\left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=4ye^{xy}

\displaystyle f_y=4xe^{xy}

\displaystyle f_z=\frac{1}{z}

The rules used to find the derivatives are

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^u=e^u \frac{\mathrm{du} }{\mathrm{d} x}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \ln(x)=\frac{1}{x}

Example Question #1602 : Calculus 3

Find \displaystyle \bigtriangledown f of the following function:

\displaystyle f(x, y, z)=z^2+\sec(xy)

Possible Answers:

\displaystyle (y+x)(\sec(xy)\tan(xy)) +2z

\displaystyle \left \langle x\sec(xy)\tan(xy), y\sec(xy)\tan(xy), 2z\right \rangle

\displaystyle \left \langle -y\sec(xy)\tan(xy), -x\sec(xy)\tan(xy), 2z\right \rangle

\displaystyle \left \langle y\sec(xy)\tan(xy), x\sec(xy)\tan(xy), 2z\right \rangle

Correct answer:

\displaystyle \left \langle y\sec(xy)\tan(xy), x\sec(xy)\tan(xy), 2z\right \rangle

Explanation:

The gradient of the function is given by

\displaystyle \bigtriangledown f=\left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=y\sec(xy)\tan(xy)

\displaystyle f_y=x\sec(xy)\tan(xy)

\displaystyle f_z=2z

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \sec(x)=\sec(x)\tan(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

Example Question #41 : Gradient Vector, Tangent Planes, And Normal Lines

Find \displaystyle \nabla f of the given function:

\displaystyle f(x, y, z)=xz^2\cos(y^3)

Possible Answers:

\displaystyle \left \langle 0, 0, 0\right \rangle

\displaystyle \left \langle z^2\cos(y^3), xz^2\sin(y^3), 2xz\cos(y^3)\right \rangle

\displaystyle \left \langle z^2\cos(y^3), 3xy^2z^2\sin(y^3), 2xz\cos(y^3)\right \rangle

\displaystyle \left \langle z^2\cos(y^3), -3xy^2z^2\sin(y^3), 2xz\cos(y^3)\right \rangle

Correct answer:

\displaystyle \left \langle z^2\cos(y^3), -3xy^2z^2\sin(y^3), 2xz\cos(y^3)\right \rangle

Explanation:

The gradient of the function is given by

\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants. 

The partial derivatives are 

\displaystyle f_x=z^2\cos(y^3)

\displaystyle f_y=-3xy^2z^2\sin(y^3)

\displaystyle f_z=2xz\cos(y^3)

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \cos(x)=-\sin(x)

Example Question #46 : Gradient Vector, Tangent Planes, And Normal Lines

Find\displaystyle \nabla f of the following function:

\displaystyle f(x, y, z)=e^x\tan(z)+y^2z^4

Possible Answers:

\displaystyle \left \langle e^x, 2y, 2z^3\right \rangle

\displaystyle \left \langle e^x\tan(z), 2yz^4, 4y^2z^3\right \rangle

\displaystyle \left \langle e^x\tan(z), yz^4, y^2z^3\right \rangle

\displaystyle e^x\tan(z) + 2yz^4+4y^2z^3

Correct answer:

\displaystyle \left \langle e^x\tan(z), 2yz^4, 4y^2z^3\right \rangle

Explanation:

The gradient of the function is given by

\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=e^x\tan(z)

\displaystyle f_y=2yz^4

\displaystyle f_z=4y^2z^3

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x

Example Question #51 : Gradient Vector, Tangent Planes, And Normal Lines

Find the equation of the tangent plane to the following function at \displaystyle (2, 5, 4):

\displaystyle f(x, y, z)=xy+4z

Possible Answers:

\displaystyle 5x+2y+4z=36

\displaystyle 2x+5y+4z=36

\displaystyle 5x+2y+4z=0

\displaystyle 2x+5y+4z=0

Correct answer:

\displaystyle 5x+2y+4z=36

Explanation:

The equation of the tangent plane is given by

\displaystyle f_x(x_0, y_0, z_0)(x-x_0)+f_y(x_0, y_0, z_0)(y-y_0)+f_z(x_0, y_0, z_0)(z-z_0)=0

So, we must find the partial derivatives for the function evaluated at the point given. To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=y

\displaystyle f_y=x

\displaystyle f_z=4

The derivatives were found using the following rule:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a

Evaluated at the given point, the partial derivatives are

\displaystyle f_x=5

\displaystyle f_y=2

\displaystyle f_z=4

Note that the partial derivative with respect to z was 4 to begin with; the fact that the point has a z coordinate of 4 is a coincidence.

Now, plug all of this into our given formula:

\displaystyle 5(x-2)+2(y-5)+4(z-4)=0

which simplified becomes

\displaystyle 5x+2y+4z=36

Example Question #51 : Gradient Vector, Tangent Planes, And Normal Lines

Find \displaystyle \nabla f of the following function:

\displaystyle f(x, y, z)=ze^z+xy

Possible Answers:

\displaystyle \left \langle x, y, e^z+ze^z\right \rangle

\displaystyle \left \langle y, x, 2e^z\right \rangle

\displaystyle \left \langle y, x, e^z\right \rangle

\displaystyle \left \langle y, x, e^z+ze^z\right \rangle

Correct answer:

\displaystyle \left \langle y, x, e^z+ze^z\right \rangle

Explanation:

The gradient of a function is given by

\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants. 

The partial derivatives are

\displaystyle f_x=y

\displaystyle f_y=x

\displaystyle f_z=e^z+ze^z

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(x)g(x)=f'(x)g(x)+f(x)g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x

Example Question #52 : Gradient Vector, Tangent Planes, And Normal Lines

Find \displaystyle \nabla f of the following function:

\displaystyle f(x, y, z)=xyz^4+ze^y

Possible Answers:

\displaystyle yz^4+xz^4+4xyz^3+2ze^y

\displaystyle \left \langle yz^4, xz^4+ze^y, 4xyz^3+ze^y\right \rangle

\displaystyle \left \langle yz^4, xz^4+ze^y, 4xyz^3+e^y\right \rangle

\displaystyle \left \langle yz^4, xz^4+ze^y, 4xyz+ze^y\right \rangle

Correct answer:

\displaystyle \left \langle yz^4, xz^4+ze^y, 4xyz^3+e^y\right \rangle

Explanation:

The gradient of a function is given by

\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=yz^4

\displaystyle f_y=xz^4+ze^y

\displaystyle f_z=4xyz^3+ze^y

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} e^x=e^x\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

Example Question #53 : Gradient Vector, Tangent Planes, And Normal Lines

Find \displaystyle \nabla f of the following function:

\displaystyle f(x,y,z)=\sec(xyz^2)

Possible Answers:

\displaystyle \left \langle yz^2\sec(xyz^2)\tan(xyz^2), xz^2\sec(xyz^2)\tan(xyz^2), 2xyz^2\sec(xyz^2)\tan(xyz^2)\right \rangle

\displaystyle \left \langle x\sec(xyz^2)\tan(xyz^2), y\sec(xyz^2)\tan(xyz^2), 2z\sec(xyz^2)\tan(xyz^2)\right \rangle

\displaystyle \left \langle yz^2\sec(xyz^2)\tan(xyz^2), xz^2\sec(xyz^2)\tan(xyz^2), 2xyz\sec(xyz^2)\tan(xyz^2)\right \rangle

\displaystyle \left \langle yz^2\sec(xyz^2)\tan(xyz^2), xz^2\sec(xyz^2)\tan(xyz^2), xyz\sec(xyz^2)\tan(xyz^2)\right \rangle

Correct answer:

\displaystyle \left \langle yz^2\sec(xyz^2)\tan(xyz^2), xz^2\sec(xyz^2)\tan(xyz^2), 2xyz\sec(xyz^2)\tan(xyz^2)\right \rangle

Explanation:

The gradient of a function is given by

\displaystyle \nabla f=\left \langle f_x, f_y, f_z\right \rangle

To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=yz^2\sec(xyz^2)\tan(xyz^2)

\displaystyle f_y=xz^2\sec(xyz^2)\tan(xyz^2)

\displaystyle f_z=2xyz\sec(xyz^2)\tan(xyz^2)

The derivatives were found using the following rules:

\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} f(g(x))=f'(g(x))\cdot g'(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} \sec(x)=\sec(x)\tan(x)\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} ax=a\displaystyle \frac{\mathrm{d} }{\mathrm{d} x} x^n=nx^{n-1}

Example Question #54 : Gradient Vector, Tangent Planes, And Normal Lines

Find the equation of the tangent plane to the given function at \displaystyle (2, 3, 0):

\displaystyle f(x,y,z)=xyz+y^2z

Possible Answers:

\displaystyle z=0

\displaystyle z=6

\displaystyle x+y+z=0

\displaystyle z=\frac{1}{6}

Correct answer:

\displaystyle z=0

Explanation:

The equation of the tangent plane is given by

\displaystyle f_x(x_0, y_0, z_0)(x-x_0)+f_y(x_0, y_0, z_0)(y-y_0)+f_z(x_0, y_0, z_0)(z-z_0)=0

So, we must find the partial derivatives for the function evaluated at the point given. To find the given partial derivative of the function, we must treat the other variable(s) as constants.

The partial derivatives are

\displaystyle f_x=yz

\displaystyle f_y=xz+2yz^2

\displaystyle f_z=xy+2y^2z

The partial derivatives evaluated at the given point are

\displaystyle f_x=0

\displaystyle f_y=0

\displaystyle f_z=6

Plugging all of this into the above formula, we get

\displaystyle 6(z-0)=0

\displaystyle z=0

 

Learning Tools by Varsity Tutors