Calculus 2 : Series in Calculus

Study concepts, example questions & explanations for Calculus 2

varsity tutors app store varsity tutors android store

Example Questions

Example Question #61 : Series In Calculus

Use the ratio test to find out if the following series is convergent:

\displaystyle \sum_{n = 1}^{\infty} \frac{11(n-1)!}{ln(n))}

Note: \displaystyle f(n) = \frac{(n-1)!}{ln(n)}

Possible Answers:

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{1}{11}

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 11

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty

\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1

Correct answer:

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty

Explanation:

Determine the convergence of the series based on the limits.

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \displaystyle \lim_{n\rightarrow \infty}.

\displaystyle \frac{\frac{(n)!}{ln(n+1)}} {\frac{(n-1)!}{ln(n)}} \displaystyle = \frac{\frac{(n)!}{(n-1)!}}{\frac{ln(n+1)}{ln(n)}}       \displaystyle \rightarrow \infty

Note: \displaystyle nln(n) > ln(n+1)

Example Question #61 : Series In Calculus

Use the ratio test to find out if the following series is convergent:

\displaystyle \sum_{n = 1}^{\infty} \frac{11^n}{ln(n)}

Note: \displaystyle f(n) = \frac{11^n}{ln(n)}

Possible Answers:

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 11

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0.5

\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1

Correct answer:

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 11

Explanation:

Determine the convergence of the series based on the limits.

Solution:

1. Ignore constants and simplify the equation (canceling out what you can).

2. Once the equation is simplified, take \displaystyle \lim_{n\rightarrow \infty}.

\displaystyle \frac{\frac{11^{n+1}}{ln(n+1)}} {\frac{11^n}{ln(n)}} \displaystyle = \frac{\frac{11^{n+1}}{11^n}}{\frac{ln(n+1)}{ln(n)}}

 \displaystyle ,\lim_{n\rightarrow \infty} \displaystyle = 11

Note: \displaystyle \lim_{n\rightarrow \infty} \frac{ln(n)}{ln(n+1)}=1

Example Question #26 : Ratio Test

For the following series

\displaystyle \small \sum_{n=0}^{\infty}\frac{n!x^n}{(2n)!}

what is its radius of convergence?

Possible Answers:

\displaystyle \small 0

\displaystyle \small \frac{1}{\pi}

\displaystyle \small \infty

\displaystyle \small 3!

\displaystyle \small 1

Correct answer:

\displaystyle \small \infty

Explanation:

We can use the ratio test to find the radius of convergence:

\displaystyle \small \small \small \small \small\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n}\right |= \lim \left| \frac{x^{n+1}(n+1)!}{(2(n+1))!} \frac{(2n)!}{n!x^n} \right|=\lim \left| \frac{x^{n+1}(n+1)!}{(2n+2)!} \frac{(2n)!}{n!x^n} \right|

\displaystyle \small \small =\lim|x| \left| \frac{(n+1)!}{n!} \frac{(2n)!}{(2n+2)!} \right|=\lim|x| \left| \frac{n+1}{(2n+1)(2n+2)} \right|=0< 1

where the limit is independent of \displaystyle \small x. This means the series converges for all \displaystyle \small x\in\mathbb{R}, so the radius of convergence is \displaystyle \small \infty.

 

Example Question #1 : Sequences

Find the radius of convergence for the power series

\displaystyle \small \sum_{n=0}^{\infty}\frac{(n!)^2x^n}{(2n)!}

Possible Answers:

\displaystyle \small \small R=\frac{1}{4}

\displaystyle \small \small R=2

\displaystyle \small \small R=\infty

\displaystyle \small R=4

\displaystyle \small R=0

Correct answer:

\displaystyle \small R=4

Explanation:

We can use the limit

\displaystyle \small \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|

to find the radius of convergence. We have

\displaystyle \small \small \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|=\lim \left| \frac{x^{n+1}[(n+1)!]^2}{(2(n+1))!} \frac{(2n!)}{(n!)^2x^n}\right|

\displaystyle \small \small \small \small =\lim |x|\left| \frac{(2n)!}{(2n+2)!} \frac{[(n+1)!]^2}{(n!)^2}\right|=\lim |x|\left| \frac{(n+1)(n+1)}{(2n+1)(2n+2)}\right|=\frac{|x|}{4}< 1

This means the radius of convergence is \displaystyle \small R=4.

Example Question #2842 : Calculus Ii

Find the radius of convergence of the following power series.

\displaystyle \small \sum_{n=0}^{\infty} \frac{(n!)^3x^{4n}}{(3n)!}

Possible Answers:

\displaystyle \small \small R=0

\displaystyle \small R=27^{1/4}

\displaystyle \small \small R=9^{1/4}

\displaystyle \small \small R=\frac{1}{27^{1/4}}

\displaystyle \small R=\infty

Correct answer:

\displaystyle \small R=27^{1/4}

Explanation:

To find the radius of convergence of

\displaystyle \small \sum_{n=0}^{\infty} \frac{(n!)^3x^{4n}}{(3n)!}

we can use the limit from the ratio test:

\displaystyle \small \lim_{n\to \infty} \left| \frac{a_{n+1}}{a_n} \right|=\lim\left| \frac{x^{4n+4}[(n+1)!]^3}{(3n+3)!}\frac{(3n)!}{x^{4n}(n!)^3} \right |

\displaystyle \small \small \small =\lim |x^4|\left| \frac{[(n+1)!]^3}{(n!)^3}\frac{(3n)!}{(3n+3)!} \right |=\lim |x^4| \left|\frac{(n+1)(n+1)(n+1)}{(3n+1)(3n+2)(3n+3)} \right |

\displaystyle \small =\frac{|x^4|}{27}< 1

\displaystyle \small \small \iff |x|< 27^{1/4}=R

So the radius of convergence of the power series mentioned is \displaystyle \small R=27^{1/4}.

Example Question #61 : Series In Calculus

Find the radius of convergence of the power series:

\displaystyle \small \small \sum_{n=0}^\infty \frac{n! (2n+1)!}{(3n)!}x^{2n}

Possible Answers:

\displaystyle \small \small R= \infty

\displaystyle \small R= \frac{\sqrt{27}}{2}

\displaystyle \small \frac{27}{4}

\displaystyle \small \small R= 0

\displaystyle \small \small R= \sqrt{\frac{4}{27}}

Correct answer:

\displaystyle \small R= \frac{\sqrt{27}}{2}

Explanation:

We can use the ratio test limit to find the radius of convergence:

\displaystyle \small \small \lim_{n\to \infty}\left|\frac{a_{n+1}}{a_n} \right |=\lim\left|\frac{(n+1)! (2n+3)!x^{2n+2}}{(3n+3)!}\frac{(3n)!}{(2n+1)!n!x^{2n}} \right |

\displaystyle \small =\lim|x^2|\left|\frac{(n+1)!}{n!}\frac{(2n+3)!}{(2n+1)!}\frac{(3n)!}{(3n+3)!} \right |=\lim|x^2|\left|\frac{(n+1)(2n+2)(2n+3)}{(3n+1)(3n+2)(3n+3)} \right |

\displaystyle \small =\frac{4|x^2|}{27}< 1

\displaystyle \small \small \iff |x| < \sqrt{\frac{27}{4}}=\frac{\sqrt{27}}{2}=R

Example Question #65 : Series In Calculus

Possible Answers:

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1000

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0

\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{4}{1000}

Correct answer:

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{4}{1000}

Explanation:

\displaystyle \frac{\frac{4^{\left(n+1\right)}}{10^{3\left(n+1\right)}}}{\frac{4^n}{10^{3n}}} = \frac{4^{n+1}\cdot \:10^{3n}}{4^n\cdot \:10^{3\left(n+1\right)}}= \frac{4}{1000}

\displaystyle \lim_{n\rightarrow \infty} \frac{4}{1000} = \frac{4}{1000}

Example Question #61 : Series In Calculus

Possible Answers:

\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{11}{3}

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{11}{216}

Correct answer:

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{11}{216}

Explanation:

\displaystyle \frac{\frac{11^{\left(n+1\right)}}{6^{3\left(n+1\right)}}}{\frac{11^n}{6^{3n}}} = \frac{6^{3n}\cdot \:11^{n+1}}{6^{3\left(n+1\right)}\cdot \:11^n} = \frac{11}{216}

\displaystyle \lim_{n\rightarrow \infty} \frac{11}{216} = \frac{11}{216}

 

Example Question #31 : Ratio Test

Possible Answers:

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{8}{7}

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{7}{8}

\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty

Correct answer:

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{7}{8}

Explanation:

\displaystyle \frac{\frac{7^{n+1}}{2^{3\left(n+1\right)}}}{\frac{7^n}{2^{3n}}} = \frac{2^{3n}\cdot \:7^{n+1}}{2^{3\left(n+1\right)}\cdot \:7^n} = \frac{7}{8}

\displaystyle \lim_{n\rightarrow \infty}\frac{7}{8} =\frac{7}{8}

Example Question #32 : Ratio Test

Possible Answers:

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} \rightarrow \infty

\displaystyle Inconclusive: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 1

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = 0

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{5}{4}

\displaystyle Convergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{11}{20}

Correct answer:

\displaystyle Divergent: \lim_{n\rightarrow \infty} \frac{f(n+1)}{f(n)} = \frac{5}{4}

Explanation:

\displaystyle \frac{\frac{20^{\left(n+1\right)}}{4^{2\left(n+1\right)}}}{\frac{20^n}{4^{2n}}} = \frac{4^{2n}\cdot \:20^{n+1}}{4^{2\left(n+1\right)}\cdot \:20^n} = \frac{20}{16} = \frac{5}{4}

\displaystyle \lim_{n\rightarrow \infty} \frac{5}{4} = \frac{5}{4}

Learning Tools by Varsity Tutors